Chin. Phys. Lett.  2021, Vol. 38 Issue (6): 066801    DOI: 10.1088/0256-307X/38/6/066801
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Database Construction for Two-Dimensional Material-Substrate Interfaces
Xian-Li Zhang1,2†, Jinbo Pan1†, Xin Jin1,2, Yan-Fang Zhang2,1, Jia-Tao Sun3, Yu-Yang Zhang2,4, and Shixuan Du1,2,4,5*
1Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2School of Physics, University of Chinese Academy of Sciences, Beijing 100049, China
3School of Information and Electronics, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Beijing Institute of Technology, Beijing 100081, China
4CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
5Songshan Lake Materials Laboratory, Dongguan 523808, China
Cite this article:   
Xian-Li Zhang, Jinbo Pan, Xin Jin et al  2021 Chin. Phys. Lett. 38 066801
Download: PDF(1768KB)   PDF(mobile)(3419KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Interfacial structures and interactions of two-dimensional (2D) materials on solid substrates are of fundamental importance for fabrications and applications of 2D materials. However, selection of a suitable solid substrate to grow a 2D material, determination and control of 2D material-substrate interface remain a big challenge due to the large diversity of possible configurations. Here, we propose a computational framework to select an appropriate substrate for epitaxial growth of 2D material and to predict possible 2D material-substrate interface structures and orientations using density functional theory calculations performed for all non-equivalent atomic structures satisfying the symmetry constraints. The approach is validated by the correct prediction of three experimentally reported 2D material-substrate interface systems with only the given information of two parent materials. Several possible interface configurations are also proposed based on this approach. We therefore construct a database that contains these interface systems and has been continuously expanding. This database serves as preliminary guidance for epitaxial growth and stabilization of new materials in experiments.
Received: 09 April 2021      Published: 25 May 2021
PACS:  68.65.-k (Low-dimensional, mesoscopic, nanoscale and other related systems: structure and nonelectronic properties)  
  68.43.Bc (Ab initio calculations of adsorbate structure and reactions)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  79.60.Jv (Interfaces; heterostructures; nanostructures)  
Fund: Supported by the National Key R&D program of China (Grant Nos. 2019YFA0308500, 2020YFA0308800, and 2016YFA0202300), the National Natural Science Foundation of China (Grant Nos. 51922011, 61888102, and 11974045), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant Nos. XDB30000000 and XDB28000000), Beijing Institute of Technology Research Fund Program for Young Scholars, and the Fundamental Research Funds for the Central Universities.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/38/6/066801       OR      https://cpl.iphy.ac.cn/Y2021/V38/I6/066801
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xian-Li Zhang
Jinbo Pan
Xin Jin
Yan-Fang Zhang
Jia-Tao Sun
Yu-Yang Zhang
and Shixuan Du
[1] Sarmadian N, Saniz R, Partoens B, Lamoen D, Volety K, Huyberechts G, and Paul J 2014 Phys. Chem. Chem. Phys. 16 17724
[2] Zhang J, Zeng Q, Oganov A R, Dong D, and Liu Y 2014 Phys. Lett. A 378 3549
[3] Zhang S, Xie M, Li F, Yan Z, Li Y, Kan E, Liu W, Chen Z, and Zeng H 2016 Angew. Chem. Int. Ed. 55 1666
[4] Emery A A, Saal J E, Kirklin S, Hegde V I, and Wolverton C 2016 Chem. Mater. 28 5621
[5] Kweun J M, Li C, Zheng Y, Cho M, Kim Y Y, and Cho K 2016 Appl. Surf. Sci. 370 279
[6] Wang J, Yang X, Wang G, Ren J, Wang Z, Zhao X, and Pan Y 2017 Comput. Mater. Sci. 134 190
[7] Miyata M, Ozaki T, Takeuchi T, Nishino S, Inukai M, and Koyano M 2018 J. Electron. Mater. 47 3254
[8] Restuccia P, Levita G, Wolloch M, Losi G, Fatti G, Ferrario M, and Righi M C 2018 Comput. Mater. Sci. 154 517
[9] Barreteau C, Crivello J C, Joubert J M, and Alleno E 2019 Comput. Mater. Sci. 156 96
[10] Saal J E, Kirklin S, Aykol M, Meredig B, and Wolverton C 2013 JOM 65 1501
[11] Emery A A and Wolverton C 2017 Sci. Data 4 170153
[12] Kirklin S, Saal J E, Hegde V I, and Wolverton C 2016 Acta Mater. 102 125
[13] Schatschneider B, Monaco S, Liang J J, and Tkatchenko A 2014 J. Phys. Chem. C 118 19964
[14] Bradlyn B, Elcoro L, Cano J, Vergniory M G, Wang Z J, Felser C, Aroyo M I, and Bernevig B A 2017 Nature 547 298
[15] Vergniory M G, Elcoro L, Felser C, Regnault N, Bernevig B A, and Wang Z J 2019 Nature 566 480
[16] Curtarolo S, Setyawan W, Hart G L W, Jahnatek M, Chepulskii R V, Taylor R H, Wanga S D, Xue J K, Yang K S, Levy O, Mehl M J, Stokes H T, Demchenko D O, and Morgan D 2012 Comput. Mater. Sci. 58 218
[17] Calderon C E, Plata J J, Toher C, Oses C, Levy O, Fornari M, Natan A, Mehl M J, Hart G, Nardelli M B, and Curtarolo S 2015 Comput. Mater. Sci. 108 233
[18] Jain A, Hautier G, Moore C J, Ong S P, Fischer C C, Mueller T, Persson K A, and Ceder G 2011 Comput. Mater. Sci. 50 2295
[19] Jain A, Ong S P, Hautier G, Chen W, Richards W D, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G, and Persson K A 2013 APL Mater. 1 011002
[20] Ashton M, Paul J, Sinnott S B, and Hennig R G 2017 Phys. Rev. Lett. 118 106101
[21] Lebegue S, Bjorkman T, Klintenberg M, Nieminen R M, and Eriksson O 2013 Phys. Rev. X 3 031002
[22] Miro P, Audiffred M, and Heine T 2014 Chem. Soc. Rev. 43 6537
[23] Tada T, Takemoto S, Matsuishi S, and Hosono H 2014 Inorg. Chem. 53 10347
[24] Mounet N, Gibertini M, Schwaller P, Campi D, Merkys A, Marrazzo A, Sohier T, Castelli I E, Cepellotti A, Pizzi G, and Marzari N 2018 Nat. Nanotechnol. 13 246
[25] Olsen T, Okugawa T, Torelli D, Deilmann T, and Thygesen K S 2019 Phys. Rev. Mater. 3 024005
[26] Choudhary K, Kalish I, Beams R, and Tavazza F 2017 Sci. Rep. 7 5179
[27] Haastrup S, Strange M, Pandey M, Deilmann T, Schmidt P S, Hinsche N F, Gjerding M N, Torelli D, Larsen P M, Riis-Jensen A C, Gath J, Jacobsen K W, Mortensen J J, Olsen T, and Thygesen K S 2018 2D Mater. 5 042002
[28] Bae S H, Kum H, Kong W, Kim Y, Choi C, Lee B, Lin P, Park Y, and Kim J 2019 Nat. Mater. 18 550
[29] Zhang S, Yan Z, Li Y, Chen Z, and Zeng H 2015 Angew. Chem. Int. Ed. 54 3112
[30] Scalise E, Houssa M, Pourtois G, Afanas'ev V V, and Stesmans A 2012 Nano Res. 5 43
[31] Peng X, Wei Q, and Copple A 2014 Phys. Rev. B 90 085402
[32] Amorim B, Cortijo A, de Juan F, Grushin A G, Guinea F, Gutiérrez-Rubio A, Ochoa H, Parente V, Roldán R, San-Jose P, Schiefele J, Sturla M, and Vozmediano M A H 2016 Phys. Rep. 617 1
[33] Gao Y, Zhang Y Y, and Du S 2019 J. Phys.: Condens. Matter 31 194001
[34] Giovannetti G, Khomyakov P A, Brocks G, Karpan V M, van den Brink J, and Kelly P J 2008 Phys. Rev. Lett. 101 026803
[35] Yan J, Wu L, Ma R S, Zhu S, Bian C, Ma J, Huan Q, Bao L, Mao J, Du S, and Gao H J 2019 2D Mater. 6 045050
[36] Dedkov Y S, Fonin M, Rudiger U, and Laubschat C 2008 Phys. Rev. Lett. 100 107602
[37] Robinson B J, Giusca C E, Gonzalez Y T, Kay N D, Kazakova O, and Kolosov O V 2015 2D Mater. 2 015005
[38] Su L Q, Yu Y F, Cao L Y, and Zhang Y 2015 Nano Res. 8 2686
[39] Mathew K, Singh A K, Gabriel J J, Choudhary K, Sinnott S B, Davydov A V, Tavazza F, and Hennig R G 2016 Comput. Mater. Sci. 122 183
[40] Ding H, Dwaraknath S S, Garten L, Ndione P, Ginley D, and Persson K A 2016 ACS Appl. Mater. & Interfaces 8 13086
[41] Gao B, Gao P Y, Lu S H, Lv J, Wang Y C, and Ma Y M 2019 Sci. Bull. 64 301
[42] Pan Y, Shi D X, and Gao H J 2007 Chin. Phys. 16 3151
[43] Martoccia D, Willmott P R, Brugger T, Björck M, Günther S, Schlepütz C M, Cervellino A, Pauli S A, Patterson B D, Marchini S, Wintterlin J, Moritz W, and Greber T 2008 Phys. Rev. Lett. 101 126102
[44] Iannuzzi M, Kalichava I, Ma H, Leake S J, Zhou H, Li G, Zhang Y, Bunk O, Gao H, Hutter J, Willmott P R, and Greber T 2013 Phys. Rev. B 88 125433
[45] Meng L, Wu R T, Zhang L Z, Li L F, Du S X, Wang Y L, and Gao H J 2012 J. Phys.: Condens. Matter 24 314214
[46] Loginova E, Nie S, Thürmer K, Bartelt N C, and McCarty K F 2009 Phys. Rev. B 80 085430
[47] Shah J, Wang W, Sohail H M, and Uhrberg R I G 2020 2D Mater. 7 025013
[48] Wu X, Shao Y, Liu H, Feng Z, Wang Y L, Sun J T, Liu C, Wang J O, Liu Z L, Zhu S Y, Wang Y Q, Du S X, Shi Y G, Ibrahim K, and Gao H J 2017 Adv. Mater. 29 1605407
[49]2D material and substrate interfaces database [Online] (accessed 2, 2021). http://n11.iphy.ac.cn/2dinterface.html
[50] Zhao L, Rim K T, Zhou H, He R, Heinz T F, Pinczuk A, Flynn G W, and Pasupathy A N 2011 Solid State Commun. 151 509
[51] He R, Zhao L, Petrone N, Kim K S, Roth M, Hone J, Kim P, Pasupathy A, and Pinczuk A 2012 Nano Lett. 12 2408
[52] Xu X, Zhang Z, Dong J, Yi D, Niu J, Wu M, Lin L, Yin R, Li M, Zhou J, Wang S, Sun J, Duan X, Gao P, Jiang Y, Wu X, Peng H, Ruoff R S, Liu Z, Yu D, Wang E, Ding F, and Liu K 2017 Sci. Bull. 62 1074
[53] Marchini S, Günther S, and Wintterlin J 2007 Phys. Rev. B 76 075429
[54] de Parga A L V, Calleja F, Borca B, Passeggi M C G, Hinarejos J J, Guinea F, and Miranda R 2008 Phys. Rev. Lett. 100 056807
[55] Wang B, Günther S, Wintterlin J, and Bocquet M L 2010 New J. Phys. 12 043041
[56] Que Y D, Xiao W D, Fei X M, Chen H, Huang L, Du S X, and Gao H J 2014 Appl. Phys. Lett. 104 093110
[57] Silva C C, Iannuzzi M, Duncan D A, Ryan P T P, Clarke K T, Kuchle J T, Cai J Q, Jolie W, Schlueter C, Lee T L, and Busse C 2018 J. Phys. Chem. C 122 18554
Viewed
Full text


Abstract