Chin. Phys. Lett.  2021, Vol. 38 Issue (3): 036301    DOI: 10.1088/0256-307X/38/3/036301
Quantum Transport across Amorphous-Crystalline Interfaces in Tunnel Oxide Passivated Contact Solar Cells: Direct versus Defect-Assisted Tunneling
Feng Li1,2*, Weiyuan Duan2, Manuel Pomaska2, Malte Köhler2, Kaining Ding2, Yong Pu1*, Urs Aeberhard2, and Uwe Rau2
1College of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
2IEK-5 Photovoltaik, Forschungszentrum Jülich, 52425 Jülich, Germany
Cite this article:   
Feng Li, Weiyuan Duan, Manuel Pomaska et al  2021 Chin. Phys. Lett. 38 036301
Download: PDF(2400KB)   PDF(mobile)(2696KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Tunnel oxide passivated contact solar cells have evolved into one of the most promising silicon solar cell concepts of the past decade, achieving a record efficiency of 25%. We study the transport mechanisms of realistic tunnel oxide structures, as encountered in tunnel oxide passivating contact (TOPCon) solar cells. Tunneling transport is affected by various factors, including oxide layer thickness, hydrogen passivation, and oxygen vacancies. When the thickness of the tunnel oxide layer increases, a faster decline of conductivity is obtained computationally than that observed experimentally. Direct tunneling seems not to explain the transport characteristics of tunnel oxide contacts. Indeed, it can be shown that recombination of multiple oxygen defects in $a$-SiO$_{x}$ can generate atomic silicon nanowires in the tunnel layer. Accordingly, new and energetically favorable transmission channels are generated, which dramatically increase the total current, and could provide an explanation for our experimental results. Our work proves that hydrogenated silicon oxide (SiO$_{x}$:H) facilitates high-quality passivation, and features good electrical conductivity, making it a promising hydrogenation material for TOPCon solar cells. By carefully selecting the experimental conditions for tuning the SiO$_{x}$:H layer, we anticipate the simultaneous achievement of high open-circuit voltage and low contact resistance.
Received: 24 October 2020      Published: 02 March 2021
PACS:  75.30.Kz (Magnetic phase boundaries (including classical and quantum magnetic transitions, metamagnetism, etc.))  
  75.85.+t (Magnetoelectric effects, multiferroics)  
  77.55.Nv (Multiferroic/magnetoelectric films)  
  78.20.-e (Optical properties of bulk materials and thin films)  
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 61704083 and 61874060), the Natural Science Foundation of Jiangsu Province (Grant No. BK20181388), and NUPTSF (Grant No. NY219030).
URL:       OR
E-mail this article
E-mail Alert
Articles by authors
Feng Li
Weiyuan Duan
Manuel Pomaska
Malte Köhler
Kaining Ding
Yong Pu
Urs Aeberhard
and Uwe Rau
[1] Feldmann F, Bivour M, Reichel C, Hermle M and Glunz S W 2014 Sol. Energy Mater. Sol. Cells 120 270
[2] Richter A, Benick J, Feldmann F, Fell A, Hermle M and Glunz S W 2017 Sol. Energy Mater. Sol. Cells 173 96
[3] Stodolny M K, Lenes M, Wu Y, Janssen G J M, Romijn I G, Luchies J R M et al. 2016 Sol. Energy Mater. Sol. Cells 158 24
[4] Tao Y G, Upadhyaya V, Chen C W, Payne A, Chang E L, Upadhyaya A et al. 2016 Prog. Photovoltaics 24 830
[5] Romer U, Peibst R, Ohrdes T, Lim B, Krugener J, Bugiel E et al. 2014 Sol. Energy Mater. Sol. Cells 131 85
[6] Holman Z C, Descoeudres A, Barraud L, Fernandez F Z, Seif J P, Wolf S D et al. 2012 IEEE J. Photovoltaics 2 7
[7] Peibst R, Romer U, Larionova Y, Rienacker M, Merkle A, Folchert N et al. 2016 Sol. Energy Mater. Sol. Cells 158 60
[8] Kang J, Kim Y H, Bang J and Chang K J 2008 Phys. Rev. B 77 195321
[9] Nardelli M B 1999 Phys. Rev. B 60 7828
[10] Nardelli M B and Bernholc J 1999 Phys. Rev. B 60 R16338
[11] Kresse G and Hafner J 1993 Phys. Rev. B 48 13115
[12] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[13] Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C et al. 2009 J. Phys.: Condens. Matter 21 395502
[14] Landauer R 1970 Philos. Mag. 21 863
[15] Ferretti A, Calzolari A, Bonferroni B and Di Felice R 2007 J. Phys.: Condens. Matter 19 036215
[16] Köhler M, Pomaska M, Lentz F, Finger F, Rau U and Ding K 2018 ACS Appl. Mater. & Interfaces 10 14259
[17] Van de Walle C G and Martin R M 1987 Phys. Rev. B 35 8154
[18] Nekrashevich S S and Gritsenko V A 2014 Phys. Solid State 56 207
[19]Feldmann F, Bivour M, Reichel C, Hermle M and Glunz S W 2013 28th European Photovoltaic Solar Energy Conference and Exhibition (Paris, France, 30 September–4 October 2013) pp 988–992
[20] Yamashita Y, Asano A, Nishioka Y and Kobayashi H 1999 Phys. Rev. B 59 15872
Related articles from Frontiers Journals
[1] Yuan Wei, Xiaoyan Ma, Zili Feng, Devashibhai Adroja, Adrian Hillier, Pabitra Biswas, Anatoliy Senyshyn, Andreas Hoser, Jia-Wei Mei, Zi Yang Meng, Huiqian Luo, Youguo Shi, and Shiliang Li. Magnetic Phase Diagram of Cu$_{4-x}$Zn$_x$(OH)$_6$FBr Studied by Neutron-Diffraction and $\mu$SR Techniques[J]. Chin. Phys. Lett., 2020, 37(10): 036301
[2] Shilei Ji , Hong Wu , Shuang Zhou , Wei Niu , Lujun Wei , Xing-Ao Li , Feng Li, and Yong Pu. Enhancement of Curie Temperature under Built-in Electric Field in Multi-Functional Janus Vanadium Dichalcogenides[J]. Chin. Phys. Lett., 2020, 37(8): 036301
[3] Anders W. Sandvik, Bowen Zhao. Consistent Scaling Exponents at the Deconfined Quantum-Critical Point[J]. Chin. Phys. Lett., 2020, 37(5): 036301
[4] Huan Li, Zhi-Yong Wang, Xiao-Jun Zheng, Yu Liu, Yin Zhong. Magnetic and topological transitions in three-dimensional topological Kondo insulator[J]. Chin. Phys. Lett., 2018, 35(12): 036301
[5] Erhan Albayrak. The Mixed Spin-1/2 and Spin-1 Ising–Heisenberg Model in the Mean-Field Approximation: a New Approach[J]. Chin. Phys. Lett., 2018, 35(3): 036301
[6] Wei-Na Cui, Hong-Xia Li, Min Sun, Yong-Yuan Zhu. Coupling of Cutoff Modes in a Chain of Nonlinear Metallic Nanorods[J]. Chin. Phys. Lett., 2016, 33(12): 036301
[7] Zhong-Chao Wei, Hai-Jun Liao, Jing Chen, Hai-Dong Xie, Zhi-Yuan Liu, Zhi-Yuan Xie, Wei Li, B. Normand, Tao Xiang. Self-Consistent Spin-Wave Analysis of the 1/3 Magnetization Plateau in the Kagome Antiferromagnet[J]. Chin. Phys. Lett., 2016, 33(07): 036301
[8] Chuan-Chuan Gu, Xu-Liang Chen, Chen Shen, Lang-Sheng Ling, Li Pi, Zhao-Rong Yang, Yu-Heng Zhang. Pressure Tuning of Magnetism and Drastic Increment of Thermal Conductivity under Applied Magnetic Field in HgCr$_{2}$S$_{4}$[J]. Chin. Phys. Lett., 2016, 33(06): 036301
[9] Juan-Juan Liu, Jin-Chen Wang, Wei Luo, Jie-Ming Sheng, Zhang-Zhen He, S. A. Danilkin, Wei Bao. A Single-Crystal Neutron Diffraction Study on Magnetic Structure of the Quasi-One-Dimensional Antiferromagnet SrCo$_{2}$V$_{2}$O$_{8}$[J]. Chin. Phys. Lett., 2016, 33(03): 036301
[10] HE Qiang, GUO Yong-Quan. Structures and Magnetic Properties of Europium-Transition Metal-Gallium Ternary Intermetallic Compounds with 1:3 Type[J]. Chin. Phys. Lett., 2015, 32(01): 036301
[11] LI Peng-Fei, CAO Hai-Jing, ZHENG Li. Dzyaloshinskii–Moriya Interaction in Spin 1/2 Antiferromagnetic Rings with Nearest Next Neighbor Coupling[J]. Chin. Phys. Lett., 2013, 30(4): 036301
[12] WANG Hong-Tao, ZHOU Tong, HONG Bo, TAO Qian, XU Zhu-An** . Magnetic Properties of Orthorhombic Perovskite Ho1−xLaxMnO3[J]. Chin. Phys. Lett., 2011, 28(2): 036301
[13] WANG Xue-Li, WANG Chuan-Hui, TIAN Zhao-Ming, YIN Shi-Yan, YUAN Song-Liu . First-Principles Based Model of Spin-state Phase Transition[J]. Chin. Phys. Lett., 2010, 27(10): 036301
[14] LIU Yong-Sheng, ZHONG Yun-Bo, ZHANG Jin-Cang, GU Min-An, YANG Zheng-Long, REN Zhong-Ming. Crystalline and Magnetic Enhancement of Nanocrystalline MnZn Ferrites Fabricated under a High Magnetic Field[J]. Chin. Phys. Lett., 2009, 26(8): 036301
[15] MYDEEN Kamal, YU Yong, JIN Chang-Qing. Development of Simple Dip-Stick-Type Uniaxial Stress Actuator for Alternating-Current Susceptibility Measurements[J]. Chin. Phys. Lett., 2008, 25(9): 036301
Full text