Chin. Phys. Lett.  2021, Vol. 38 Issue (3): 035202    DOI: 10.1088/0256-307X/38/3/035202
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Energetic Particle Physics on the HL-2A Tokamak: A Review
Pei-Wan Shi1,2, Wei Chen1*, and Xu-Ru Duan1
1Southwestern Institute of Physics, Chengdu 610041, China
2Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian 116024, China
Cite this article:   
Pei-Wan Shi, Wei Chen, and Xu-Ru Duan 2021 Chin. Phys. Lett. 38 035202
Download: PDF(4313KB)   PDF(mobile)(4300KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Interaction between shear Alfvén wave (SAW) and energetic particles (EPs) is one of major concerns in magnetically confined plasmas since it may lead to excitation of toroidal symmetry breaking collective instabilities, thus enhances loss of EPs and degrades plasma confinement. In the last few years, Alfvénic zoology has been constructed on HL-2A tokamak and series of EPs driven instabilities, such as toroidal Alfvén eigenmodes (TAEs), revered shear Alfvén eigenmodes (RSAEs), beta induced Alfvén eigenmodes (BAEs), Alfvénic ion temperature gradient (AITG) modes and fishbone modes, have been observed and investigated. Those Alfvénic fluctuations show frequency chirping behaviors through nonlinear wave-particle route, and contribute to generation of axisymmetric modes by nonlinear wave-wave resonance in the presence of strong tearing modes. It is proved that the plasma confinement is affected by Alfvénic activities from multiple aspects. The RSAEs resonate with thermal ions, and this results in an energy diffusive transport process while the nonlinear mode coupling between core-localized TAEs and tearing modes trigger avalanche electron heat transport events. Effective measures have been taken to control SAW fluctuations and the fishbone activities are suppressed by electron cyclotron resonance heating. Those experimental results will not only contribute to better understandings of energetic particles physics, but also provide technology bases for active control of Alfvénic modes on International Thermonuclear Experimental Reactor (ITER) and Chinese Fusion Engineering Testing Reactor (CFETR).
Received: 27 November 2020      Published: 02 March 2021
PACS:  52.35.Mw (Nonlinear phenomena: waves, wave propagation, and other interactions (including parametric effects, mode coupling, ponderomotive effects, etc.))  
Fund: Supported by the National Key R&D Program of China (Grant Nos. 2019YFE03020000 and 2017YFE0301200), the National Natural Science Foundation of China (Grant Nos. 11835010, 11875021 and 11875024), and the China Postdoctoral Science Foundation (Grant No. 2020M670756).
TRENDMD:   
URL:  
http://cpl.iphy.ac.cn/10.1088/0256-307X/38/3/035202       OR      http://cpl.iphy.ac.cn/Y2021/V38/I3/035202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Pei-Wan Shi
Wei Chen
and Xu-Ru Duan
[1] Zonca F et al. 2015 Plasma Phys. Control. Fusion 57 014024
[2] Chen L and Zonca F 2016 Rev. Mod. Phys. 88 015008
[3] Gorelenkov N N et al. 2014 Nucl. Fusion 54 125001
[4] Heidbrink W W and White R B 2020 Phys. Plasmas 27 030901
[5] García-Muñoz M et al. 2010 Phys. Rev. Lett. 104 185002
[6] Chen X et al. 2013 Phys. Rev. Lett. 110 065004
[7] Heidbrink W W et al. 2007 Phys. Rev. Lett. 99 245002
[8] Nazikian R et al. 2006 Phys. Rev. Lett. 96 105006
[9] Kolesnichenko Y I et al. 2020 Nucl. Fusion 60 112006
[10] Stutman D et al. 2009 Phys. Rev. Lett. 102 115002
[11] Kolesnichenko Y I et al. 2010 Phys. Rev. Lett. 104 075001
[12] Fasoli A et al. 2002 Plasma Phys. Control. Fusion 44 B159
[13] Fisch N J and Herrmann M 1994 Nucl. Fusion 34 1541
[14] Sasaki M et al. 2011 Plasma Phys. Control. Fusion 53 085017
[15] Wong K L et al. 2004 Phys. Rev. Lett. 93 085002
[16] Sharapov S E et al. 2006 Nucl. Fusion 46 S868
[17] Wei Y L et al. 2014 Rev. Sci. Instrum. 85 103503
[18] Shi Z B et al. 2014 Rev. Sci. Instrum. 85 023510
[19] Zhong W L et al. 2014 Rev. Sci. Instrum. 85 013507
[20] Shi P W et al. 2016 Plasma Sci. Technol. 18 708
[21] Shi Z B et al. 2018 Rev. Sci. Instrum. 89 10H104
[22] Jiang M et al. 2013 Rev. Sci. Instrum. 84 113501
[23] Yang Q W et al. 2014 Rev. Sci. Instrum. 85 11D857
[24] Zonca F and Chen L 2014 Phys. Plasmas 21 072121
[25] Cheng C Z et al. 1985 Ann. Phys. 161 21
[26] Wong K L et al. 1991 Phys. Rev. Lett. 66 1874
[27] Shi P W et al. 2017 Phys. Plasmas 24 042509
[28] Berk H L et al. 1992 Phys. Lett. A 162 475
[29] Tsai S and Chen L 1993 Phys. Fluids B 5 3284
[30] Fu G Y and Cheng C Z 1992 Phys. Fluids B 4 3722
[31] Yu L M et al. 2018 Phys. Plasmas 25 012112
[32] Wang J L et al. 2020 Nucl. Fusion 60 112012
[33] Chen W et al. 2014 Nucl. Fusion 54 104002
[34] Berk H L et al. 2001 Phys. Rev. Lett. 87 185002
[35] Edlund E M et al. 2009 Phys. Rev. Lett. 102 165003
[36] Van Zeeland M A et al. 2016 Nucl. Fusion 56 112007
[37] Breizman B N et al. 2011 Plasma Phys. Control. Fusion 53 054001
[38] Yang Y R et al. 2020 Nucl. Fusion 60 106012
[39] Heidbrink W W et al. 1993 Phys. Rev. Lett. 71 855
[40] Shi P W et al. 2019 Nucl. Fusion 59 066015
[41] Chen W et al. 2010 Phys. Rev. Lett. 105 185004
[42] Buratti P et al. 2005 Nucl. Fusion 45 1446
[43] Chen W et al. 2010 J. Phys. Soc. Jpn. 79 044501
[44] Biancalani A et al. 2010 Phys. Rev. Lett. 105 095002
[45] Hirose A and Elia M 1996 Phys. Rev. Lett. 76 628
[46] Biglari H and Chen L 1991 Phys. Rev. Lett. 67 3681
[47] Chen W et al. 2016 Nucl. Fusion 56 036018
[48] Zonca F et al. 1999 Phys. Plasmas 6 1917
[49] Zonca F et al. 1996 Plasma Phys. Control. Fusion 38 2011
[50] Zonca F et al. 1998 Plasma Phys. Control. Fusion 40 2009
[51] Chen W et al. 2018 Nucl. Fusion 58 056004
[52] Chen W et al. 2016 Europhys. Lett. 116 45003
[53] Chen W et al. 2010 Nucl. Fusion 50 084008
[54] Gryaznevich M P et al. 2008 Nucl. Fusion 48 084003
[55] Yu L M et al. 2013 Nucl. Fusion 53 053002
[56] Yu L M et al. 2017 Nucl. Fusion 57 036023
[57] Zonca F et al. 2007 Nucl. Fusion 47 1588
[58] Chen W et al. 2019 Nucl. Fusion 59 096037
[59] Zhu X L et al. 2020 Nucl. Fusion 60 046023
[60] Chen L and Zonca F 2013 Phys. Plasmas 20 055402
[61] Berk H L and Breizman B N 1990 Phys. Fluids B 2 2246
[62] Chen L et al. 1984 Phys. Rev. Lett. 52 1122
[63] Zonca F et al. 2015 New J. Phys. 17 013052
[64] Hahm T S and Chen L 1995 Phys. Rev. Lett. 74 266
[65] Zonca F et al. 1995 Phys. Rev. Lett. 74 698
[66] Chen L and Zonca F 2012 Phys. Rev. Lett. 109 145002
[67] Qiu Z et al. 2018 Phys. Rev. Lett. 120 135001
[68] Berk H L et al. 1997 Phys. Lett. A 234 213
[69] Zhu J et al. 2014 Nucl. Fusion 54 123020
[70] Osakabe M et al. 2006 Nucl. Fusion 46 S911
[71] Berk H L et al. 1996 Phys. Rev. Lett. 76 1256
[72] Heeter R F et al. 2000 Phys. Rev. Lett. 85 3177
[73] Lilley M K et al. 2009 Phys. Rev. Lett. 102 195003
[74] Hou Y M et al. 2018 Nucl. Fusion 58 096028
[75]Zonca F and Chen L 1999 The 6th IAEA TCM on Energetic Particles in Magnetic Confinement Systems (Jaeri, Naka, Japan 12–14 October 1999)
[76] Crocker N A et al. 2006 Phys. Rev. Lett. 97 045002
[77] Chen W et al. 2014 Europhys. Lett. 107 25001
[78] Diallo A et al. 2018 Phys. Rev. Lett. 121 235001
[79] Shi P W et al. 2019 Nucl. Fusion 59 086001
[80] Kim Y C and Powers E J 1979 IEEE Trans. Plasma Sci. 7 120
[81] Wei S Z et al. 2019 Phys. Plasmas 26 074501
[82] Chen W et al. 2013 Nucl. Fusion 53 113010
[83] Chen W et al. 2017 Nucl. Fusion 57 114003
[84] Zhang Y P et al. 2015 Nucl. Fusion 55 113024
[85] Shi P W et al. 2020 Nucl. Fusion 60 064001
[86] Tamura N et al. 2005 Phys. Plasmas 12 110705
[87] Lopes C N J 1995 Plasma Phys. Control. Fusion 37 799
[88] Chen W et al. 2020 Nucl. Fusion 60 094003
[89] Bortolon A et al. 2013 Phys. Rev. Lett. 110 265008
[90] Fredrickson E D et al. 2017 Phys. Rev. Lett. 118 265001
[91] Maslovsky D et al. 2003 Phys. Rev. Lett. 90 185001
[92] Nagaoka K et al. 2013 Nucl. Fusion 53 072004
[93] Chen W et al. 2018 Nucl. Fusion 58 014001
[94] Yang Y R et al. 2019 Plasma Sci. Technol. 21 085101
[95] Wei D et al. 2014 Nucl. Fusion 54 013010
[96] Chen W et al. 2020 Chin. Phys. Lett. 37 125001
[97] Van Zeeland M A et al. 2009 Plasma Phys. Control. Fusion 51 055001
[98] Van Zeeland M A et al. 2010 Plasma Phys. Control. Fusion 52 045006
[99] Bindslev H et al. 1999 Phys. Rev. Lett. 83 3206
Related articles from Frontiers Journals
[1] Shizhao Wei, Yahui Wang, Peiwan Shi, Wei Chen, Ningfei Chen, and Zhiyong Qiu. Nonlinear Coupling of Reversed Shear Alfvén Eigenmode and Toroidal Alfvén Eigenmode during Current Ramp[J]. Chin. Phys. Lett., 2021, 38(3): 035202
[2] Wei Wang, Ruoxia Yao, and Senyue Lou. Abundant Traveling Wave Structures of (1+1)-Dimensional Sawada–Kotera Equation: Few Cycle Solitons and Soliton Molecules[J]. Chin. Phys. Lett., 2020, 37(10): 035202
[3] Bao Wang, Zhao Zhang, Biao Li. Soliton Molecules and Some Hybrid Solutions for the Nonlinear Schrödinger Equation[J]. Chin. Phys. Lett., 2020, 37(3): 035202
[4] Zhao Zhang, Shu-Xin Yang, Biao Li. Soliton Molecules, Asymmetric Solitons and Hybrid Solutions for (2+1)-Dimensional Fifth-Order KdV Equation[J]. Chin. Phys. Lett., 2019, 36(12): 035202
[5] L. Z. Kahlon, I. Javaid. Formation of Nonlinear Solitary Vortical Structures by Coupled Electrostatic Drift and Ion-Acoustic Waves[J]. Chin. Phys. Lett., 2017, 34(12): 035202
[6] A. Lysenko, I. Volk, A. Serozhko, O. Rybalko. Forming of Space Charge Wave with Broad Frequency Spectrum in Helical Relativistic Two-Stream Electron Beams[J]. Chin. Phys. Lett., 2017, 34(7): 035202
[7] E. F. EL-Shamy. Nonlinear Propagation of Positron-Acoustic Periodic Travelling Waves in a Magnetoplasma with Superthermal Electrons and Positrons[J]. Chin. Phys. Lett., 2017, 34(6): 035202
[8] Song Chai, Yu-Hong Xu, Zhe Gao, Wen-Hao Wang, Yang-Qing Liu, Yi Tan. Nonlinear Energy Cascading in Turbulence during the Internal Reconnection Event at the Sino-United Spherical Tokamak[J]. Chin. Phys. Lett., 2017, 34(2): 035202
[9] Guo-Bo Zhang, N. A. M. Hafz, Yan-Yun Ma, Lie-Jia Qian, Fu-Qiu Shao, Zheng-Ming Sheng. Laser Wakefield Acceleration Using Mid-Infrared Laser Pulses[J]. Chin. Phys. Lett., 2016, 33(09): 035202
[10] Chun-Yun Gan, Nong Xiang, Zhi Yu. Spectral Broadening of Ion Bernstein Wave Due to Parametric Decay Instabilities[J]. Chin. Phys. Lett., 2016, 33(08): 035202
[11] You-Mei Wang, M. Y. Yu, L. Stenflo, A. R. Karimov. Evolution of a Cold Non-neutral Electron–Positron Plasma Slab[J]. Chin. Phys. Lett., 2016, 33(08): 035202
[12] M. R. Hossen, S. A. Ema, A. A. Mamun. Nonlinear Dynamics in a Nonextensive Complex Plasma with Viscous Electron Fluids[J]. Chin. Phys. Lett., 2016, 33(06): 035202
[13] Shuan Zhao, Chen Lin, Jia-Er Chen, Wen-Jun Ma, Jun-Jie Wang, Xue-Qing Yan. Using Target Ablation for Ion Beam Quality Improvement[J]. Chin. Phys. Lett., 2016, 33(03): 035202
[14] HE Peng, GAO Xin-Liang, LU Quan-Ming, ZHAO Jin-Song. Parametric Instabilities of Parallel Propagating Circularly Polarized Alfvén Waves: One-Dimensional Hybrid Simulations[J]. Chin. Phys. Lett., 2015, 32(11): 035202
[15] LI Xin-Xia, XIANG Nong, GAN Chun-Yun. Effect of Wave Accessibility on Lower Hybrid Wave Current Drive in Experimental Advanced Superconductor Tokamak with H-Mode Operation[J]. Chin. Phys. Lett., 2015, 32(03): 035202
Viewed
Full text


Abstract