Chin. Phys. Lett.  2021, Vol. 38 Issue (2): 020502    DOI: 10.1088/0256-307X/38/2/020502
GENERAL |
Micro-Gas Flow Induced Stochastic Resonance of a Nonlinear Nanomechanical Resonator
Shaochun Lin1,2,3, Tian Tian1,2,3, Peiran Yin4, Pu Huang4, Liang Zhang1,2,3*, and Jiangfeng Du1,2,3*
1Hefei National Laboratory for Physical Science at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
2CAS Key Laboratory of Microscale Magnetic Resonance, University of Science and Technology of China, Hefei 230026, China
3Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
4National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China
Cite this article:   
Shaochun Lin, Tian Tian, Peiran Yin et al  2021 Chin. Phys. Lett. 38 020502
Download: PDF(860KB)   PDF(mobile)(852KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Fluidics is one of the most historic subjects that are well-established over centuries on the macroscopic scale. In recent years, fluid detection using a number of micro/nano scale devices has been achieved. However, the interaction of microfluid and solid devices on micro/nano-meter scale still lacks in-depth research. We demonstrate a practical nanomechanical detector for microfluidics via a string resonator with high $Q$-factor, suspended over a hole. This device is placed under a jet nozzle with several microns of diameter, and the interaction between the micro-gas flow and the resonator is observed by monitoring the variation of the fundamental frequency and the quality factor. Moreover, we manage to measure the fluctuations of the micro-gas flow on the nanomechanical resonator by means of stochastic resonance. This work manifests a potential platform for detecting dynamical fluid behaviors at microscopic scale for novel fluid physics.
Received: 20 October 2020      Published: 27 January 2021
PACS:  05.10.Gg (Stochastic analysis methods)  
  84.60.Rb (Thermoelectric, electrogasdynamic and other direct energy conversion)  
  62.40.+i (Anelasticity, internal friction, stress relaxation, and mechanical resonances)  
  07.07.Df (Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing)  
Fund: Supported by the National Key R&D Program of China (Grant No. 2018YFA0306600), the Chinese Academy of Sciences (Grant Nos. GJJSTD20170001 and QYZDY-SSW-SLH004), and Anhui Initiative in Quantum Information Technologies (Grant No. AHY050000).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/38/2/020502       OR      https://cpl.iphy.ac.cn/Y2021/V38/I2/020502
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Shaochun Lin
Tian Tian
Peiran Yin
Pu Huang
Liang Zhang
and Jiangfeng Du
[1] Zhang Y and Zhao Y P 2015 Sensors 15 14871
[2] Jensen K, Kim K and Zettl A 2008 Nat. Nanotechnol. 3 533
[3] Lassagne B, Garcia-Sanchez D, Aguasca A and Bachtold A 2008 Nano Lett. 8 3735
[4] Chaste J, Eichler A, Moser J, Ceballos G, Rurali R and Bachtold A 2012 Nat. Nanotechnol. 7 301
[5] Yang Y T, Callegari C, Feng X L, Ekinci K L and Roukes M L 2006 Nano Lett. 6 583
[6] Naik A K, Hanay M S, Hiebert W K, Feng X L and Roukes M L 2009 Nat. Nanotechnol. 4 445
[7] Chiu H Y, Hung P, Postma H W C and Bockrath M 2008 Nano Lett. 8 4342
[8] LaHaye M D 2004 Science 304 74
[9] Rugar D, Budakian R, Mamin H J and Chui B W 2004 Nature 430 329
[10] Huang P, Zhou J, Zhang L, Hou D, Lin S, Deng W, Meng C, Duan C, Ju C, Zheng X, Xue F and Du J 2016 Nat. Commun. 7 11517
[11] Bordag M, Mohideen U and Mostepanenko V 2001 Phys. Rep. 353 1
[12] Smullin S J, Geraci A A, Weld D M, Chiaverini J, Holmes S and Kapitulnik A 2005 Phys. Rev. D 72 122001
[13] Squires T M and Quake S R 2005 Rev. Mod. Phys. 77 977
[14] Whitesides G M 2006 Nature 442 368
[15] Hong J W and Quake S R 2003 Nat. Biotechnol. 21 1179
[16] Zhang L, Koo J M, Jiang L, Asheghi M, Goodson K E, Santiago J G and Kenny T W 2002 J. Microeletromech. Sys. 11 12
[17] Esquivel J P, Campo F J D, de la F J L G, Rojas S and Sabaté N 2014 Energy & Environ. Sci. 7 1744
[18] Ferrigno R, Stroock A D, Clark T D, Mayer M and Whitesides G M 2002 J. Am. Chem. Soc. 124 12930
[19] Roques-Carmes T, Hayes R A, Feenstra B J and Schlangen L J M 2004 J. Appl. Phys. 95 4389
[20] Bullard E C, Li J, Lilley C R, Mulvaney P, Roukes M L and Sader J E 2014 Phys. Rev. Lett. 112 015501
[21] Defoort M, Lulla K, Crozes T, Maillet O, Bourgeois O and Collin E 2014 Phys. Rev. Lett. 113 136101
[22] Bargatin I, Myers E B, Aldridge J S, Marcoux C, Brianceau P, Duraffourg L, Colinet E, Hentz S, Andreucci P and Roukes M L 2012 Nano Lett. 12 1269
[23] Badzey R L and Mohanty P 2005 Nature 437 995
[24] Aldridge J S and Cleland A N 2005 Phys. Rev. Lett. 94 156403
[25] Lotze C, Corso M, Franke K J, von Oppen F and Pascual J I 2012 Science 338 779
[26] Lifshitz R and Cross M C 2008 Reviews of Nonlinear Dynamics and Complexity (New York: Wiley-VCH Verlag) chap 1
[27] Gammaitoni L, Hänggi P, Jung P and Marchesoni F 1998 Rev. Mod. Phys. 70 223
[28] Schmid S, Jensen K D, Nielsen K H and Boisen A 2011 Phys. Rev. B 84 165307
[29] Verbridge S S, Parpia J M, Reichenbach R B, Bellan L M and Craighead H G 2006 J. Appl. Phys. 99 124304
[30] Unterreithmeier Q P, Faust T and Kotthaus J P 2010 Phys. Rev. Lett. 105 027205
[31] Cleland A and Roukes M 1999 Sens. Actuators A 72 256
[32] Verbridge S S, Craighead H G and Parpia J M 2008 Appl. Phys. Lett. 92 013112
[33] Verbridge S S, Ilic R, Craighead H G and Parpia J M 2008 Appl. Phys. Lett. 93 013101
Viewed
Full text


Abstract