Chin. Phys. Lett.  2020, Vol. 37 Issue (10): 108101    DOI: 10.1088/0256-307X/37/10/108101
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Scrolled Production of Large-Scale Continuous Graphene on Copper Foils
Zhibin Zhang1†, Jiajie Qi1†, Mengze Zhao1, Nianze Shang1, Yang Cheng1, Ruixi Qiao2, Zhihong Zhang2, Mingchao Ding1,3, Xingguang Li1, Kehai Liu4, Xiaozhi Xu5, Kaihui Liu1,2, Can Liu1*, and Muhong Wu1,2,4*
1State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
2International Centre for Quantum Materials, Collaborative Innovation Centre of Quantum Matter, Peking University, Beijing 100871, China
3Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
4Songshan Lake Materials Laboratory, Institute of Physics, Chinese Academy of Sciences, Guangdong 523808, China
5Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510631, China
Cite this article:   
Zhibin Zhang, Jiajie Qi, Mengze Zhao et al  2020 Chin. Phys. Lett. 37 108101
Download: PDF(3060KB)   PDF(mobile)(5459KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We report an efficient and economical way for mass production of large-scale graphene films with high quality and uniformity. By using the designed scrolled copper-graphite structure, a continuous graphene film with typical area of $200 \times 39$ cm$^{2}$ could be obtained in 15 min, and the production rate of the graphene film and space utilization rate of the CVD reactor can reach 520 cm$^{2}$$\cdot$min$^{-1}$ and 0.38 cm$^{-1}$$\cdot$min$^{-1}$, respectively. Our method provides a guidance for the industrial production of graphene films, and may also accelerate its large-scale applications.
Received: 12 July 2020      Published: 29 September 2020
PACS:  81.05.ue (Graphene)  
  89.20.Bb (Industrial and technological research and development)  
  81.15.Gh (Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))  
  68.65.Pq (Graphene films)  
Fund: Supported by the Beijing Natural Science Foundation (Grant No. JQ19004), the Key R&D Program of Guangdong Province (Grant Nos. 2019B010931001, 2020B010189001, 2018B010109009 and 2018B030327001), Bureau of Industry and Information Technology of Shenzhen (Graphene platform 201901161512), the National Natural Science Foundation of China (Grant Nos. 51991340, 51991342 and 51522201), the National Key R&D Program of China (Grant Nos. 2016YFA0300903 and 2016YFA0300804), the Beijing Excellent Talents Training Support (Grant No. 2017000026833ZK11), the Beijing Municipal Science & Technology Commission (Grant No. Z191100007219005), the Beijing Graphene Innovation Program (Z181100004818003), the Guangdong Innovative and Entrepreneurial Research Team Program (Grant No. 2016ZT06D348), the Science, Technology and Innovation Commission of Shenzhen Municipality (Grant No. KYTDPT20181011104202253), the National Postdoctoral Program for Innovative Talents (Grant No. BX20190016), and China Postdoctoral Science Foundation (Grant Nos. 2019M660280 and 2019M660281).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/10/108101       OR      https://cpl.iphy.ac.cn/Y2020/V37/I10/108101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zhibin Zhang
Jiajie Qi
Mengze Zhao
Nianze Shang
Yang Cheng
Ruixi Qiao
Zhihong Zhang
Mingchao Ding
Xingguang Li
Kehai Liu
Xiaozhi Xu
Kaihui Liu
Can Liu
and Muhong Wu
[1] Novoselov K S, Fal'ko V I, Colombo L, Gellert P R et al. 2012 Nature 490 192
[2] Lee C, Wei X, Kysar J W and Hone J 2008 Science 321 385
[3] Balandin A A, Ghosh S, Bao W, Calizo I et al. 2008 Nano Lett. 8 902
[4] Banszerus L, Schmitz M, Engels S, Dauber J et al. 2015 Sci. Adv. 1 e1500222
[5] Elias D C, Nair R R, Mohiuddin T M, Morozov S V et al. 2009 Science 323 610
[6] Lin L, Peng H and Liu Z 2019 Nat. Mater. 18 520
[7] Eda G, Fanchini G and Chhowalla M 2008 Nat. Nanotechnol. 3 270
[8] Marcano D C, Kosynkin D V, Berlin J M, Sinitskii A et al. 2010 ACS Nano 4 4806
[9] Pei S F and Cheng H M 2012 Carbon 50 3210
[10] Paton K R, Varrla E, Backes C, Smith R J et al. 2014 Nat. Mater. 13 624
[11] Ciesielski A and Samori P 2014 Chem. Soc. Rev. 43 381
[12] Kim J, Park H, Hannon J B, Bedell S W et al. 2013 Science 342 833
[13] Li X S, Cai W W, An J H, Kim S et al. 2009 Science 324 1312
[14] Xu X, Zhang Z, Qiu L, Zhuang J et al. 2016 Nat. Nanotechnol. 11 930
[15] Liu C, Xu X Z, Qiu L, Wu M H et al. 2019 Nat. Chem. 11 730
[16] Wu T, Zhang X, Yuan Q, Xue J et al. 2016 Nat. Mater. 15 43
[17] Xu J, Hu J, Li Q, Wang R et al. 2017 Small 13 1700651
[18] Feng S R, Yao T Y, Lu Y H, Hao Z Z et al. 2019 Nano Energy 58 63
[19] Zhang Z B and Liu K H 2019 Sci. Bull. 64 487
[20] Liu C, Wang L, Qi J and Liu K 2020 Adv. Mater. 32 2000046
[21] Yamada T, Ishihara M, Kim J, Hasegawa M et al. 2012 Carbon 50 2615
[22] Deng B, Hsu P C, Chen G C, Chandrashekar B N et al. 2015 Nano Lett. 15 4206
[23] Kidambi P R, Mariappan D D, Dee N T, Vyatskikh A et al. 2018 ACS Appl. Mater. & Interfaces 10 10369
[24] Hesjedal T 2011 Appl. Phys. Lett. 98 133106
[25] Kobayashi T, Bando M, Kimura N, Shimizu K et al. 2013 Appl. Phys. Lett. 102 023112
[26] Polsen E S, McNerny D Q, Viswanath B, Pattinson S W et al. 2015 Sci. Rep. 5 10257
[27] Bae S, Kim H, Lee Y, Xu X F et al. 2010 Nat. Nanotechnol. 5 574
[28] Polat E O, Balci O, Kakenov N, Uzlu H B et al. 2015 Sci. Rep. 5 16744
[29] Chandrashekar B N, Deng B, Smitha A S, Chen Y et al. 2015 Adv. Mater. 27 5210
[30] Zhong G F, Wu X Y, D'Arsie L, Teo K B K et al. 2016 Appl. Phys. Lett. 109 193103
[31] Xu X Z, Zhang Z H, Dong J C, Yi D et al. 2017 Sci. Bull. 62 1074
[32] Wang H, Xu X, Li J, Lin L et al. 2016 Adv. Mater. 28 8968
[33] Nagai Y, Sugime H and Noda S 2019 Chem. Eng. Sci. 201 319
[34] Wu B, Geng D C, Guo Y L, Huang L P et al. 2011 Adv. Mater. 23 3522
[35] Liu L X, Zhou H L, Cheng R, Chen Y et al. 2012 J. Mater. Chem. 22 1498
[36] Bhaviripudi S, Jia X T, Dresselhaus M S and Kong J 2010 Nano Lett. 10 4128
[37] Zhang Z B, Xu X Z, Zhang Z H, Wu M H et al. 2018 Adv. Mater. Interfaces 5 1800377
[38] Wu M H, Zhang Z B, Xu X Z, Zhang Z H et al. 2020 Nature 581 406
[39] Ni Z H, Wang H M, Kasim J, Fan H M et al. 2007 Nano Lett. 7 2758
Related articles from Frontiers Journals
[1] Jia-Jun Ma, Zhen-Yu Wang, Shui-Gang Xu, Yu-Xiang Gao, Yu-Yang Zhang, Qing Dai, Xiao Lin, Shi-Xuan Du, Jindong Ren, and Hong-Jun Gao. Local Density of States Modulated by Strain in Marginally Twisted Bilayer Graphene[J]. Chin. Phys. Lett., 2022, 39(4): 108101
[2] Xiao-Feng Li, Ruo-Xuan Sun, Su-Yun Wang, Xiao Li, Zhi-Bo Liu, and Jian-Guo Tian. Recent Advances in Moiré Superlattice Structures of Twisted Bilayer and Multilayer Graphene[J]. Chin. Phys. Lett., 2022, 39(3): 108101
[3] Fuxin Wang, Chao Zhang, Yanmei Yang, Yuanyuan Qu, Yong-Qiang Li, Baoyuan Man, and Weifeng Li. Tuning the Water Desalination Performance of Graphenic Layered Nanomaterials by Element Doping and Inter-Layer Spacing[J]. Chin. Phys. Lett., 2020, 37(11): 108101
[4] Zhong Wang, Zhiyang Yuan, and Feng Liu. Extended Nernst–Planck Equation Incorporating Partial Dehydration Effect[J]. Chin. Phys. Lett., 2020, 37(9): 108101
[5] Hao-Jing Zhang, Gai-Ge Zheng, Yun-Yun Chen, Xiu-Juan Zou, Lin-Hua Xu. A Perfect Graphene Absorber with Waveguide Coupled High-Contrast Gratings[J]. Chin. Phys. Lett., 2018, 35(3): 108101
[6] S. Fahad, M. Ali, S. Ahmed, S. Khan, S. Alam, S. Akhtar. Effect of Metal Contact and Rapid Thermal Annealing on Electrical Characteristics of Graphene Matrix[J]. Chin. Phys. Lett., 2017, 34(10): 108101
[7] Ren-Xia Ning, Zheng Jiao, Jie Bao. Narrow and Dual-Band Tunable Absorption of a Composite Structure with a Graphene Metasurface[J]. Chin. Phys. Lett., 2017, 34(10): 108101
[8] ZHANG Yu-Ping, LI Tong-Tong, LV Huan-Huan, HUANG Xiao-Yan, ZHANG Xiao, XU Shi-Lin, ZHANG Hui-Yun. Graphene-Based Tunable Polarization Insensitive Dual-Band Metamaterial Absorber at Mid-Infrared Frequencies[J]. Chin. Phys. Lett., 2015, 32(06): 108101
[9] GAO Chuan-Wei, WANG Ying-Ying, JIANG Jie, NAN Hai-Yan, NI Zhen-Hua. Raman Study of Polydimethylsiloxane Substrate Effect on Hydrogenation of Graphene[J]. Chin. Phys. Lett., 2015, 32(5): 108101
[10] ZHOU Xiang, CHEN Ji, GU Lin, MIAO Ling. Li Storage Performance for the Composite Structure Of Graphene and Boron Fullerene[J]. Chin. Phys. Lett., 2015, 32(02): 108101
[11] LIU Qing-Bin, YU Cui, LI Jia, SONG Xu-Bo, HE Ze-Zhao, LU Wei-Li, GU Guo-Dong, WANG Yuan-Gang, FENG Zhi-Hong. Radio-Frequency Performance of Epitaxial Graphene Field-Effect Transistors on Sapphire Substrates[J]. Chin. Phys. Lett., 2014, 31(07): 108101
[12] LUO Wen-Gang, WANG Hua-Feng, CAI Kai-Ming, HAN Wen-Peng, TAN Ping-Heng, HU Ping-An, WANG Kai-You. Synthesis of Homogenous Bilayer Graphene on Industrial Cu Foil[J]. Chin. Phys. Lett., 2014, 31(06): 108101
[13] CHEN Ya-Qin. Determination of the In-Plane Optical Conductivity of Multilayer Graphene Supported on a Transparent Substrate of Finite Thickness from Normal-Incidence Transmission Spectra[J]. Chin. Phys. Lett., 2014, 31(05): 108101
[14] Tatnatchai Suwannasit, Rassmidara Hoonsawat, I-Ming Tang, Bumned Soodchomshom. Josephson Effect in Graphene: Comparison of Real and Pseudo Vector Potential Barriers[J]. Chin. Phys. Lett., 2014, 31(03): 108101
[15] Bumned Soodchomshom. Pseudo Spin Torque Induced by Strain Field of Dirac Fermions in Graphene[J]. Chin. Phys. Lett., 2013, 30(12): 108101
Viewed
Full text


Abstract