Chin. Phys. Lett.  2020, Vol. 37 Issue (9): 098501    DOI: 10.1088/0256-307X/37/9/098501
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Room-Temperature Processed Amorphous ZnRhCuO Thin Films with p-Type Transistor and Gas-Sensor Behaviors
Bojing Lu1, Rumin Liu1, Siqin Li1, Rongkai Lu1, Lingxiang Chen2*, Zhizhen Ye1,2, and Jianguo Lu1,2*
1State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
2Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China
Cite this article:   
Bojing Lu, Rumin Liu, Siqin Li et al  2020 Chin. Phys. Lett. 37 098501
Download: PDF(667KB)   PDF(mobile)(658KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We examine an amorphous oxide semiconductor (AOS) of ZnRhCuO. The $a$-ZnRhCuO films are deposited at room temperature, having a high amorphous quality with smooth surface, uniform thickness and evenly distributed elements, as well as a high visible transmittance above 87% with a wide bandgap of 3.12 eV. Using $a$-ZnRhCuO films as active layers, thin-film transistors (TFTs) and gas sensors are fabricated. The TFT behaviors demonstrate the p-type nature of $a$-ZnRhCuO channel, with an on-to-off current ratio of $\sim$$1\times 10^{3}$ and field-effect mobility of 0.079 cm$^{2}$V$^{-1}$s$^{-1}$. The behaviors of gas sensors also prove that the $a$-ZnRhCuO films are of p-type conductivity. Our achievements relating to p-type $a$-ZnRhCuO films at room temperature with TFT devices may pave the way to practical applications of AOSs in transparent flexible electronics.
Received: 16 May 2020      Published: 01 September 2020
PACS:  85.30.De (Semiconductor-device characterization, design, and modeling)  
  85.30.Tv (Field effect devices)  
  73.61.Jc (Amorphous semiconductors; glasses)  
  81.05.Gc (Amorphous semiconductors)  
Fund: Supported by the National Natural Science Foundation of China (Grant No. 51741209), and the Zhejiang Provincial Natural Science Foundation of China (Grant Nos. LR16F040001 and LGG19F040005).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/9/098501       OR      https://cpl.iphy.ac.cn/Y2020/V37/I9/098501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Bojing Lu
Rumin Liu
Siqin Li
Rongkai Lu
Lingxiang Chen
Zhizhen Ye
and Jianguo Lu
[1] Nomura K, Ohta H, Takagi A, Kamiya T, Hirano M and Hosono H 2004 Nature 432 488
[2] Wager J F, Yeh B, Hoffman R L and Keszler D A 2014 Curr. Opin. Solid State Mater. Sci. 18 53
[3] Lu B J, Lu Y D, Zhu H J, Zhang J Q, Yue S L, Li S Q, Zhuge F, Ye Z Z and Lu J G 2019 Mater. Lett. 249 169
[4] Jiang Q J, Wu C J, Feng L S, Gong L, Ye Z Z and Lu J G 2015 Appl. Surf. Sci. 357 1536
[5] Yue S L, Lu J G, Lu R K, Li S Q, Lu B J, Zhao Y, Li X F, Zhang J H and Ye Z Z 2019 IEEE Trans. Electron Devices 66 2960
[6] Honda W, Harada S, Ishida S, Arie T, Akita S and Takei K 2015 Adv. Mater. 27 4674
[7] Feng L S, Yu G Y, Li X F, Zhang J H, Ye Z Z and Lu J G 2017 IEEE Trans. Electron Devices 64 206
[8] Jiang Q J, Feng L S, Wu C J, Sun R J, Li X F, Lu B, Ye Z Z and Lu J G 2015 Appl. Phys. Lett. 106 053503
[9] Wang Z W, Nayak P K, Caraveo-Fresca J A S and Alshareef H N 2016 Adv. Mater. 28 3831
[10] Ogo Y, Hiramatsu H, Nomura K, Yanagi H, Kamiya T, Hirano M and Hosono H 2008 Appl. Phys. Lett. 93 032113
[11] Fortunato E, Barros R, Barquinha P, Figueiredo V, Park S, Hwang C and Martins R 2010 Appl. Phys. Lett. 97 052105
[12] Jiang J, Wang X, Zhang Q, Li J and Zhang X X 2013 Phys. Chem. Chem. Phys. 15 6875
[13] Park I J, Jeong C Y, U M, Song S h, Cho I T, Lee J H, Cho E S and Kwon H I 2013 IEEE Electron Device Lett. 34 647
[14] Matsuzaki K, Nomura K, Yanagi H, Kamiya T, Hirano M and Hosono H 2008 Appl. Phys. Lett. 93 202107
[15] Kawazoe H, Yasukawa M, Hyodo H, Kurita M, Yanagi H and Hosono H 1997 Nature 389 939
[16] Kamiya T, Narushima S, Mizoguchi S, Shimizu K, Ueda K, Ohta H, Hirano M and Hosono H 2005 Adv. Funct. Mater. 15 968
[17] Kim S, Cianfrone J A, Sadik P, Kim K W, Ivill M and Norton D P 2010 J. Appl. Phys. 107 103538
[18] Li J, Kaneda T, Tokumitsu E, Koyano M, Mitani T and Shimoda T 2012 Appl. Phys. Lett. 101 052102
[19] Lu J G, Ye Z Z, Huang J Y, Wang L and Zhao B H 2003 Appl. Surf. Sci. 207 295
[20] Yuan G D, Zhang W J, Jie J S, Fan X, Zapien J A, Leung Y H, Luo L B, Wang P F, Lee C S and Lee S T 2008 Nano Lett. 8 2591
[21] Liu W, Xiu F, Sun K, Xie Y, Wang K, Wang Y, Zou J, Yang Z and Liu J 2010 J. Am. Chem. Soc. 132 2498
[22] Lee J, Cha S, Kim J, Nam H, Lee S, Ko W, Wang K, Park J and Hong J 2011 Adv. Mater. 23 4183
[23] Wang F, Seo J, Bayerl D, Shi J, Mi H, Ma Z, Zhao D, Shuai Y, Zhou W and Wang X 2011 Nanotechnology 22 225602
[24] Narushima S, Mizoguchi H, Shimizu K, Ueda K, Ohta H, Hirano M, Kamiya T and Hosono H 2003 Adv. Mater. 15 1409
Related articles from Frontiers Journals
[1] Yue Li, Li Zhu, Chunsheng Chen, Ying Zhu, Changjin Wan, and Qing Wan. High-Performance Indium-Gallium-Zinc-Oxide Thin-Film Transistors with Stacked Al$_{2}$O$_{3}$/HfO$_{2}$ Dielectrics[J]. Chin. Phys. Lett., 2022, 39(11): 098501
[2] Ming-Liang Zhang , Xu-Ming Zou , and Xing-Qiang Liu. Surface Modification for WSe$_{2}$ Based Complementary Electronics[J]. Chin. Phys. Lett., 2020, 37(11): 098501
[3] Wen-Jian Shi, Ze-Ming Kan, Chuan-Hui Cheng, Wen-Hui Li, Hang-Qi Song, Meng Li, Dong-Qi Yu, Xiu-Yun Du, Wei-Feng Liu, Sheng-Ye Jin, and Shu-Lin Cong. Antimony Selenide Thin Film Solar Cells with an Electron Transport Layer of Alq$_{3}$[J]. Chin. Phys. Lett., 2020, 37(10): 098501
[4] Hang Yang, Wei Chen, Ming-Yang Li, Feng Xiong, Guang Wang, Sen Zhang, Chu-Yun Deng, Gang Peng, and Shi-Qiao Qin. Ultrathin Al Oxide Seed Layer for Atomic Layer Deposition of High-$\kappa$ Al$_{2}$O$_{3}$ Dielectrics on Graphene[J]. Chin. Phys. Lett., 2020, 37(7): 098501
[5] Lin-Lin Su , Dong Zhou, Qing Liu , Fang-Fang Ren , Dun-Jun Chen , Rong Zhang , You-Dou Zheng , Hai Lu. Effect of a Single Threading Dislocation on Electrical and Single Photon Detection Characteristics of 4H-SiC Ultraviolet Avalanche Photodiodes[J]. Chin. Phys. Lett., 2020, 37(6): 098501
[6] Yang Jiang, Ze-Yu Wan, Guang-Nan Zhou, Meng-Ya Fan, Gai-Ying Yang, R. Sokolovskij, Guang-Rui Xia, Qing Wang, Hong-Yu Yu. A Novel Oxygen-Based Digital Etching Technique for p-GaN/AlGaN Structures without Etch-Stop Layers[J]. Chin. Phys. Lett., 2020, 37(6): 098501
[7] Lin-Lin Su , Dong Zhou, Qing Liu , Fang-Fang Ren , Dun-Jun Chen , Rong Zhang , You-Dou Zheng , Hai Lu. Effect of a Single Threading Dislocation on Electrical and Single Photon Detection Characteristics of 4H-SiC Ultraviolet Avalanche Photodiodes *[J]. Chin. Phys. Lett., 0, (): 098501
[8] Yang Jiang, Ze-Yu Wan, Guang-Nan Zhou, Meng-Ya Fan, Gai-Ying Yang, R. Sokolovskij, Guang-Rui Xia, Qing Wang, Hong-Yu Yu. A Novel Oxygen-Based Digital Etching Technique for p-GaN/AlGaN Structures without Etch-Stop Layers *[J]. Chin. Phys. Lett., 0, (): 098501
[9] Bin Wang, Hao-Yu Kong, Lei Sun. Performance Analyses of Planar Schottky Barrier MOSFETs with Dual Silicide Layers at Source/Drain on Bulk Substrates and Material Studies of ErSi$_{x}$/CoSi$_{2}$/Si Stack Interface[J]. Chin. Phys. Lett., 2020, 37(3): 098501
[10] Ashkan Horri, Rahim Faez. Full-Quantum Simulation of Graphene Self-Switching Diodes[J]. Chin. Phys. Lett., 2019, 36(6): 098501
[11] Junkang Li, Yiming Qu, Siyu Zeng, Ran Cheng, Rui Zhang, Yi Zhao. Ge Complementary Tunneling Field-Effect Transistors Featuring Dopant Segregated NiGe Source/Drain[J]. Chin. Phys. Lett., 2018, 35(11): 098501
[12] Li-Hua Dai, Da-Wei Bi, Zheng-Xuan Zhang, Xin Xie, Zhi-Yuan Hu, Hui-Xiang Huang, Shi-Chang Zou. Metastable Electron Traps in Modified Silicon-on-Insulator Wafer[J]. Chin. Phys. Lett., 2018, 35(5): 098501
[13] Jie Fan, Sheng-Ming Sun, Hai-Zhu Wang, Yong-Gang Zou. Low Specific On-Resistance SOI LDMOS with Non-Depleted Embedded P-Island and Dual Trench Gate[J]. Chin. Phys. Lett., 2018, 35(3): 098501
[14] Yi Zhang, Gen-Quan Han, Yan Liu, Huan Liu, Jin-Cheng Zhang, Yue Hao. Ohmic Contact at Al/TiO$_{2}$/n-Ge Interface with TiO$_{2}$ Deposited at Extremely Low Temperature[J]. Chin. Phys. Lett., 2018, 35(2): 098501
[15] Li Zhang, Jin-Feng Zhang, Wei-Hang Zhang, Tao Zhang, Lei Xu, Jin-Cheng Zhang, Yue Hao. Robust Performance of AlGaN-Channel Metal-Insulator-Semiconductor High-Electron-Mobility Transistors at High Temperatures[J]. Chin. Phys. Lett., 2017, 34(12): 098501
Viewed
Full text


Abstract