Chin. Phys. Lett.  2020, Vol. 37 Issue (9): 093701    DOI: 10.1088/0256-307X/37/9/093701
ATOMIC AND MOLECULAR PHYSICS |
Significantly Improving the Escape Time of a Single $^{40}$Ca$^+$ Ion in a Linear Paul Trap by Fast Switching of the Endcap Voltage
Peng-Peng Zhou1,2, Shao-Long Chen1, Shi-Yong Liang1,2, Wei Sun1, Huan-Yao Sun1, Yao Huang1, Hua Guan1*, and Ke-Lin Gao1,3*
1State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
2University of Chinese Academy of Sciences, Beijing 100049, China
3Center for Cold Atom Physics, Chinese Academy of Sciences, Wuhan 430071, China
Cite this article:   
Peng-Peng Zhou, Shao-Long Chen, Shi-Yong Liang et al  2020 Chin. Phys. Lett. 37 093701
Download: PDF(786KB)   PDF(mobile)(781KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Sympathetic cooling is a method used to lower the kinetic energy of ions with complicated energy-level structures, via Coulomb interactions with laser-cooled ions in an ion trap. The ion to be sympathetically cooled is sometimes prepared outside of the trap, and it is critical to introduce this ion into the trap by temporarily lowering the potential of one endcap without allowing the coolant ion to escape. We study the time required for a laser-cooled ion to escape from a linear Paul trap when the voltage of one endcap is lowered. The escape time is on the order of a few microseconds, and varies significantly when the low-level voltage changes. A re-cooling time of a maximum of 13 s was measured, which can be reduced to approximately one hundred of milliseconds by decreasing the duration of the low-level voltage. The measurement of these critical values lays the foundation for the smooth injection and cooling of the ion to be sympathetically cooled.
Received: 06 May 2020      Published: 01 September 2020
PACS:  37.10.Ty (Ion trapping)  
  37.10.-x (Atom, molecule, and ion cooling methods)  
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 11934014, 11622434 and 11804373), the Scientific Instrument Developing Project of the Chinese Academy of Sciences (Grant No. YZ201552), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDB21030100 and XDB21030300), CAS Youth Innovation Promotion Association (Grant Nos. Y201963 and 2018364), and the Hubei Province Science Fund for Distinguished Young Scholars (Grant No. 2017CFA040).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/9/093701       OR      https://cpl.iphy.ac.cn/Y2020/V37/I9/093701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Peng-Peng Zhou
Shao-Long Chen
Shi-Yong Liang
Wei Sun
Huan-Yao Sun
Yao Huang
Hua Guan
and Ke-Lin Gao
[1] Cirac J I and Zoller P 1995 Phys. Rev. Lett. 74 4091
[2] Huang Y, Guan H, Zeng M Y, Tang L Y and Gao K L 2019 Phys. Rev. A 99 011401
[3] Zeng M Y, Huang Y, Shao H, Wang M and Gao K L 2018 Chin. Phys. Lett. 35 074202
[4] Schmidt P O, Rosenband T, Langer C, Itano W M, Bergquist J C and Wineland D J 2005 Science 309 749
[5] Guan H, Huang Y, Liu P L, Bian W, Shao H and Gao K L 2015 Chin. Phys. B 24 054213
[6] Karin G B, Felix S, Georg J et al. 2019 Phys. Rev. A 99 023420
[7] Schmöger L, Versolato O O et al. 2015 Science 347 1233
[8] Blythe P, Roth B, Fröhlich U, Wenz H and Schiller S 2005 Phys. Rev. Lett. 95 183002
[9] Larson D J, Bergquist J C, Bollinger J J, Itano W M and Wineland D J 1986 Phys. Rev. Lett. 57 70
[10] Ryjkov V L, Zhao X Z and Schuessler H A 2005 Phys. Rev. A 71 033414
[11] Staanum P F, Klaus H, Wester R and Drewsen M 2008 Phys. Rev. Lett. 100 243003
[12] Schiller S and Lämmerzahl C 2003 Phys. Rev. A 68 053406
[13] Chen T, Du L J, Song H F, Liu P L, Huang Y, Tong X, Guan H and Gao K L 2015 Chin. Phys. Lett. 32 083701
[14] Lv S F, Jia F D et al. 2017 Chin. Phys. Lett. 34 013401
[15] Ostendorf A, Zhang C B, Wilson M A, Offenberg D, Roth B and Schiller S 2006 Phys. Rev. Lett. 97 243005
[16] Liang S Y, Lu Q F, Wang X C, Yang Y et al. 2019 Rev. Sci. Instrum. 90 093301
[17] Chen S L, Liang S Y, Sun W, Huang Y, Guan H and Gao K L 2019 Rev. Sci. Instrum. 90 043112
[18] Chen S L, Zhou P P, Liang S Y, Sun W, Sun H Y, Huang Y, Guan H and Gao K L 2020 Chin. Phys. Lett. 37 073201
[19]Production C B 2008 PhD dissertation (Institut für Experimentalphysik, Heinrich-Heine-Universität Düsseldorf, Germany)
[20] Schmöger L, Schwarz M, Baumann T M et al. 2015 Rev. Sci. Instrum. 86 103111
[21] Andelkovic Z, Cazan R, Nörtershüser W et al. 2013 Phys. Rev. A 87 033423
[22] Shao H, Wang M, Zeng M Y, Guan H and Gao K L 2018 J. Phys. Commun. 2 095019
[23] Qian Y, Liang S Y, Huang Y, Guan H and Gao K L 2019 Chin. J. Lasers 46 0211004 (in Chinese)
[24] Berkeland D J, Miller J D, Bergquist J C, Itano W M and Wineland D J 1998 J. Appl. Phys. 83 5025
[25] Du L J, Chen T, Song H F, Chen S L, Li H X, Huang Y, Tong X, Guan H and Gao K L 2015 Chin. Phys. B 24 083702
Related articles from Frontiers Journals
[1] Y.-K. Wu  and L.-M. Duan. A Two-Dimensional Architecture for Fast Large-Scale Trapped-Ion Quantum Computing[J]. Chin. Phys. Lett., 2020, 37(7): 093701
[2] Ji Li, Liang Chen, Yi-He Chen, Zhi-Chao Liu, Hang Zhang, Mang Feng. Three-Dimensional Compensation for Minimizing Heating of the Ion in Surface-Electrode Trap[J]. Chin. Phys. Lett., 2020, 37(5): 093701
[3] Hai-Xia Li, Min Li, Qian-Yu Zhang, Xin Tong. Secular Motion Frequencies of $^{9}$Be$^{+}$ Ions and $^{40}$Ca$^{+}$ Ions in Bi-component Coulomb Crystals[J]. Chin. Phys. Lett., 2019, 36(7): 093701
[4] Meng-Yan Zeng, Yao Huang, Hu Shao, Miao Wang, Hua-Qing Zhang, Bao-Lin Zhang, Hua Guan, Ke-Lin Gao. Improvement of Stability of $^{40}$Ca$^{+}$ Optical Clock with State Preparation[J]. Chin. Phys. Lett., 2018, 35(7): 093701
[5] Jiu-Zhou He, Lei-Lei Yan, Liang Chen, Ji Li, Mang Feng. Measurement of Heating Rates in a Microscopic Surface-Electrode Ion Trap[J]. Chin. Phys. Lett., 2017, 34(6): 093701
[6] Jie Zhang, Ke Deng, Jun Luo, Ze-Huang Lu. Direct Laser Cooling Al$^+$ Ion Optical Clocks[J]. Chin. Phys. Lett., 2017, 34(5): 093701
[7] Jun-Juan Shang, Kai-Feng Cui, Jian Cao, Shao-Mao Wang, Si-Jia Chao, Hua-Lin Shu, Xue-Ren Huang. Sympathetic Cooling of $^{40}$Ca$^+$–$^{27}$Al$^+$ Ion Pair Crystal in a Linear Paul Trap[J]. Chin. Phys. Lett., 2016, 33(10): 093701
[8] Zhi-Hui Yang, Hao Liu, Yue-Hong He, Man Wang, Yong-Quan Wan, Yi-He Chen, Lei She, Jiao-Mei Li. Optimal Microwave Radiation Field Parameters for Mercury Ion Microwave Frequency Standards[J]. Chin. Phys. Lett., 2016, 33(06): 093701
[9] CHEN Ting, DU Li-Jun, SONG Hong-Fang, LIU Pei-Liang, HUANG Yao, TONG Xin, GUAN Hua, GAO Ke-Lin. Preparation of Ultracold Li+ Ions by Sympathetic Cooling in a Linear Paul Trap[J]. Chin. Phys. Lett., 2015, 32(08): 093701
[10] ZHANG Jian-Wei, MIAO Kai, WANG Li-Jun. Dick Effect in a Microwave Frequency Standard Based on Laser-Cooled 113Cd+ Ions[J]. Chin. Phys. Lett., 2015, 32(01): 093701
[11] LIU Wei, CHEN Shu-Ming, CHEN Ping-Xing, WU Wei. Design Optimization for Anharmonic Linear Surface-Electrode Ion Trap[J]. Chin. Phys. Lett., 2014, 31(11): 093701
[12] LIU Pei-Liang, HUANG Yao, BIAN Wu, SHAO Hu, QIAN Yuan, GUAN Hua, GAO Ke-Lin. Preliminary Frequency Comparison of Two 40Ca+ Optical Frequency Standards[J]. Chin. Phys. Lett., 2014, 31(11): 093701
[13] LIU Hao, YANG Yu-Na, HE Yue-Hong, LI Hai-Xia, CHEN Yi-He, SHE Lei, LI Jiao-Mei. Microwave-Optical Double-Resonance Spectroscopy Experiment of 199Hg+ Ground State Hyperfine Splitting in a Linear Ion Trap[J]. Chin. Phys. Lett., 2014, 31(06): 093701
[14] CAO Jian, TONG Xin, CUI Kai-Feng, SHANG Jun-Juan, SHU Hua-Lin, HUANG Xue-Ren. Simulation and Optimization of Miniature Ring-Endcap Ion Traps[J]. Chin. Phys. Lett., 2014, 31(04): 093701
[15] LIU Wei, CHEN Shu-Ming, CHEN Ping-Xing, WU Wei. A Configurable Surface-Electrode Ion Trap Design for Quantum Information Processing[J]. Chin. Phys. Lett., 2013, 30(12): 093701
Viewed
Full text


Abstract