Chin. Phys. Lett.  2020, Vol. 37 Issue (8): 087103    DOI: 10.1088/0256-307X/37/8/087103
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Type-II Dirac Semimetal State in a Superconductor Tantalum Carbide
Zhihai Cui1,2, Yuting Qian1,2, Wei Zhang3*, Hongming Weng1,2,4*, and Zhong Fang1,2
1Beijing National Research Center for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
3Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and Energy, Fujian Normal University, Fuzhou 350117, China
4Songshan Lake Materials Laboratory, Dongguan 523808, China
Cite this article:   
Zhihai Cui, Yuting Qian, Wei Zhang et al  2020 Chin. Phys. Lett. 37 087103
Download: PDF(1021KB)   PDF(mobile)(1006KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The exploration of topological Dirac semimetals with intrinsic superconductivity can be a most plausible way to discover topological superconductors. We propose that type-II Dirac semimetal states exist in the band structure of TaC, a well-known s-wave superconductor, by using the first-principles calculations and the ${\boldsymbol{k} \cdot {\boldsymbol p}}$ effective model. The tilted gapless Dirac cones, which are composed of Ta $d$ and C $p$ orbitals and are protected by $C_{4v}$ symmetry, are found to be below the Fermi level. The bands from Ta $d$ orbitals are greatly coupled with the acoustic modes around the zone boundary, indicating their significant contribution to the superconductivity. The relatively high transition temperature $\sim$10.5 K is estimated to be consistent with the experimental data. To bring the type-II Dirac points close to chemical potential, hole doping is needed. This seems to decrease the transition temperature a lot, making the realization of topological superconductivity impossible.
Received: 12 June 2020      Published: 28 July 2020
PACS:  71.20.-b (Electron density of states and band structure of crystalline solids)  
  74.25.-q (Properties of superconductors)  
  73.20.At (Surface states, band structure, electron density of states)  
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 11974076, 11674369 and 11925408), and the Natural Science Foundation of Fujian Province of China (Grant No. 2018J06001), the Beijing Natural Science Foundation (Grant No. Z180008), Beijing Municipal Science and Technology Commission (Grant No. Z191100007219013), the National Key Research and Development Program of China (Grant Nos. 2016YFA0300600 and 2018YFA0305700), the K. C. Wong Education Foundation (Grant No. GJTD-2018-01), and the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB33000000).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/8/087103       OR      https://cpl.iphy.ac.cn/Y2020/V37/I8/087103
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zhihai Cui
Yuting Qian
Wei Zhang
Hongming Weng
and Zhong Fang
[1] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[2] Nayak C, Simon S H, Stern A, Freedman M and Das Sarma S 2008 Rev. Mod. Phys. 80 1083
[3] Fu L and Kane C L 2008 Phys. Rev. Lett. 100 096407
[4] Kawakami T and Sato M 2019 Phys. Rev. B 100 094520
[5] Zhang J L, Zhang S J, Weng H M, Zhang W, Yang L X, Liu Q Q, Feng S M, Wang X C, Yu R C, Cao L Z, Wang L, Yang W G, Liu H Z, Zhao W Y, Zhang S C, Dai X, Fang Z and Jin C Q 2011 Proc. Natl. Acad. Sci. USA 108 24
[6] Kobayashi S and Sato M 2015 Phys. Rev. Lett. 115 187001
[7] Qian Y, Nie S, Yi C, Kong L, Fang C, Qian T, Ding H, Shi Y, Wang Z, Weng H and Fang Z 2019 npj Comput. Mater. 5 121
[8] Jia Y T, Zhao J F, Zhang S J, Yu S, Dai G Y, Li W M, Duan L, Zhao G Q, Wang X C, Zheng X, Liu Q Q, Long Y W, Li Z, Li X D, Weng H M, Yu R Z, Yu R C and Jin C Q 2019 Chin. Phys. Lett. 36 087401
[9] Wang Z, Sun Y, Chen X Q, Franchini C, Xu G, Weng H, Dai X and Fang Z 2012 Phys. Rev. B 85 195320
[10] Wang Z, Weng H, Wu Q, Dai X and Fang Z 2013 Phys. Rev. B 88 125427
[11] Young S M, Zaheer S, Teo J C Y, Kane C L, Mele E J and Rappe A M 2012 Phys. Rev. Lett. 108 140405
[12] Wan X, Turner A M, Vishwanath A and Savrasov S Y 2011 Phys. Rev. B 83 205101
[13] Xu G, Weng H, Wang Z, Dai X and Fang Z 2011 Phys. Rev. Lett. 107 186806
[14] Zhang W, Luo K, Chen Z, Zhu Z, Yu R, Fang C and Weng H 2019 npj Comput. Mater. 5 105
[15] Zhang W, Wu Q, Yazyev O V, Weng H, Guo Z, Cheng W D and Chai G L 2018 Phys. Rev. B 98 115411
[16] Wu M, Zhang H, Zhu X, Lu J, Zheng G, Gao W, Han Y, Zhou J, Ning W and Tian M 2019 Chin. Phys. Lett. 36 067201
[17] Wang H, Wang H, Liu H, Lu H, Yang W, Jia S, Liu X J, Xie X C, Wei J and Wang J 2016 Nat. Mater. 15 38
[18] Schoop L M, Xie L S, Chen R, Gibson Q D, Lapidus S H, Kimchi I, Hirschberger M, Haldolaarachchige N, Ali M N, Belvin C A, Liang T, Neaton J B, Ong N P, Vishwanath A and Cava R J 2015 Phys. Rev. B 91 214517
[19] Wang D, Kong L, Fan P, Chen H, Zhu S, Liu W, Cao L, Sun Y, Du S, Schneeloch J, Zhong R, Gu G, Fu L, Ding H and Gao H J 2018 Science 362 333
[20] Machida T, Sun Y, Pyon S, Takeda S, Kohsaka Y, Hanaguri T, Sasagawa T and Tamegai T 2019 Nat. Mater. 18 811
[21] Liu Q, Chen C, Zhang T, Peng R, Yan Y J, Wen C H P, Lou X, Huang Y L, Tian J P, Dong X L, Wang G W, Bao W C, Wang Q H, Yin Z P, Zhao Z X and Feng D L 2018 Phys. Rev. X 8 041056
[22] Zhang J and Huang G Q 2020 J. Phys.: Condens. Matter 32 205702
[23] Zeller H R 1972 Phys. Rev. B 5 1813
[24] Zhang X, Hilmas G E, Fahrenholtz W G and Deason D M 2007 J. Am. Ceram. Soc. 90 393
[25] Kresse G and Hafner J 1993 Phys. Rev. B 48 13115
[26] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[27] Blöchl P E 1994 Phys. Rev. B 50 17953
[28] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[29] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[30] Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M, Dabo I, Dal Corso A, de Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen A P, Smogunov A, Umari P and Wentzcovitch R M 2009 J. Phys.: Condens. Matter 21 395502
[31] Troullier N and Martins J L 1991 Phys. Rev. B 43 1993
[32] Mostofi A A, Yates J R, Lee Y S, Souza I, Vanderbilt D and Marzari N 2008 Comput. Phys. Commun. 178 685
[33] Noffsinger J, Giustino F, Malone B D, Park C H, Louie S G and Cohen M L 2010 Comput. Phys. Commun. 181 2140
[34] Poncé S, Margine E R, Verdi C and Giustino F 2016 Comput. Phys. Commun. 209 116
[35] Nakamura K and Yashima M 2008 Mater. Sci. & Eng. B 148 69
[36] Sheng X L, Wang Z, Yu R, Weng H, Fang Z and Dai X 2014 Phys. Rev. B 90 245308
[37]Altmann S and Herzig P 1994 Point-Group Theory Tables (Oxford: Clarendon)
[38] Yang B J and Nagaosa N 2014 Nat. Commun. 5 4898
[39] Noffsinger J, Giustino F, Louie S G and Cohen M L 2008 Phys. Rev. B 77 180507
[40] Blackburn S, Côté M, Louie S G and Cohen M L 2011 Phys. Rev. B 84 104506
[41] Allen P B and Dynes R C 1975 Phys. Rev. B 12 905
[42] Shang T, Zhao J Z, Gawryluk D J, Shi M, Medarde M, Pomjakushina E and Shiroka T 2020 Phys. Rev. B 101 214518
Related articles from Frontiers Journals
[1] Chuli Sun, Wei Guo, and Yugui Yao. Predicted Pressure-Induced High-Energy-Density Iron Pentazolate Salts[J]. Chin. Phys. Lett., 2022, 39(8): 087103
[2] Sheng Wang, Zia ur Rehman, Zhanfeng Liu, Tongrui Li, Yuliang Li, Yunbo Wu, Hongen Zhu, Shengtao Cui, Yi Liu, Guobin Zhang, Li Song, and Zhe Sun. Tailoring of Bandgap and Spin-Orbit Splitting in ZrSe$_{2}$ with Low Substitution of Ti for Zr[J]. Chin. Phys. Lett., 2022, 39(7): 087103
[3] Lulu Liu, Shoutao Zhang, and Haijun Zhang. Pressure-Driven Ne-Bearing Polynitrides with Ultrahigh Energy Density[J]. Chin. Phys. Lett., 2022, 39(5): 087103
[4] Kun Luo, Baozhong Li, Lei Sun, Yingju Wu, Yanfeng Ge, Bing Liu, Julong He, Bo Xu, Zhisheng Zhao, and Yongjun Tian. Novel Boron Nitride Polymorphs with Graphite-Diamond Hybrid Structure[J]. Chin. Phys. Lett., 2022, 39(3): 087103
[5] Bin Han, Junjie Zeng, and Zhenhua Qiao. In-Plane Magnetization-Induced Corner States in Bismuthene[J]. Chin. Phys. Lett., 2022, 39(1): 087103
[6] Zhe Huang, Xianbiao Shi, Gaoning Zhang, Zhengtai Liu, Soohyun Cho, Zhicheng Jiang, Zhonghao Liu, Jishan Liu, Yichen Yang, Wei Xia, Weiwei Zhao, Yanfeng Guo, and Dawei Shen. Photoemission Spectroscopic Evidence of Multiple Dirac Cones in Superconducting BaSn$_3$[J]. Chin. Phys. Lett., 2021, 38(10): 087103
[7] Wen-Han Dong, De-Liang Bao, Jia-Tao Sun, Feng Liu, and Shixuan Du. Manipulation of Dirac Fermions in Nanochain-Structured Graphene[J]. Chin. Phys. Lett., 2021, 38(9): 087103
[8] Shuai Liu, Si-Min Nie, Yan-Peng Qi, Yan-Feng Guo, Hong-Tao Yuan, Le-Xian Yang, Yu-Lin Chen, Mei-Xiao Wang, and Zhong-Kai Liu. Measurement of Superconductivity and Edge States in Topological Superconductor Candidate TaSe$_{3}$[J]. Chin. Phys. Lett., 2021, 38(7): 087103
[9] Yi Jiang, Zhong Fang, and Chen Fang. A $\boldsymbol{k}$$\cdot$$\boldsymbol{p}$ Effective Hamiltonian Generator[J]. Chin. Phys. Lett., 2021, 38(7): 087103
[10] Zhilin Xu, Shuai-Hua Ji, Lin Tang, Jian Wu, Na Li, Xinqiang Cai, and Xi Chen. Molecular Beam Epitaxy Growth and Electronic Structures of Monolayer GdTe$_{3}$[J]. Chin. Phys. Lett., 2021, 38(7): 087103
[11] Yongqing Cai, Tao Xie, Huan Yang, Dingsong Wu, Jianwei Huang, Wenshan Hong, Lu Cao, Chang Liu, Cong Li, Yu Xu, Qiang Gao, Taimin Miao, Guodong Liu, Shiliang Li, Li Huang, Huiqian Luo, Zuyan Xu, Hongjun Gao, Lin Zhao, and X. J. Zhou. Common ($\pi$,$\pi$) Band Folding and Surface Reconstruction in FeAs-Based Superconductors[J]. Chin. Phys. Lett., 2021, 38(5): 087103
[12] Zhenjiang Han, Han Liu, Quan Li, Dan Zhou, and Jian Lv. Superior Mechanical Properties of GaAs Driven by Lattice Nanotwinning[J]. Chin. Phys. Lett., 2021, 38(4): 087103
[13] Yun-Xian Liu , Chao Wang, Shuai Han , Xin Chen , Hai-Rui Sun , and Xiao-Bing Liu. Novel Superconducting Electrides in Ca–S System under High Pressures[J]. Chin. Phys. Lett., 2021, 38(3): 087103
[14] Chen Qiu, Ruyue Cao, Cai-Xin Zhang, Chen Zhang, Dan Guo, Tao Shen, Zhu-You Liu, Yu-Ying Hu, Fei Wang, and Hui-Xiong Deng. First-Principles Study of Intrinsic Point Defects of Monolayer GeS[J]. Chin. Phys. Lett., 2021, 38(2): 087103
[15] Xingyong Huang, Liujiang Zhou, Luo Yan, You Wang, Wei Zhang, Xiumin Xie, Qiang Xu, and Hai-Zhi Song. HfX$_{2}$ (X = Cl, Br, I) Monolayer and Type II Heterostructures with Promising Photovoltaic Characteristics[J]. Chin. Phys. Lett., 2020, 37(12): 087103
Viewed
Full text


Abstract