Chin. Phys. Lett.  2020, Vol. 37 Issue (8): 087106    DOI: 10.1088/0256-307X/37/8/087106
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Structure-Spin-Transport Anomaly in Quasi-One-Dimensional Ba$_{9}$Fe$_{3}$Te$_{15}$ under High Pressure
Jun Zhang1,2,3†, Mei-Ling Jin1,8†, Xiang Li4†, Xian-Cheng Wang2*, Jian-Fa Zhao2,3, Ying Liu5, Lei Duan2,3, Wen-Min Li2,3, Li-Peng Cao2, Bi-Juan Chen1, Li-Juan Wang1, Fei Sun1, Yong-Gang Wang1, Liu-Xiang Yang1, Yu-Ming Xiao6, Zheng Deng2, Shao-Min Feng2, Chang-Qing Jin2,3,7*, and Jin-Long Zhu1,8*
1Center for High Pressure Science & Technology Advanced Research, Beijing 100094, China
2Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
3School of Physics, University of Chinese Academy of Sciences, Beijing 100190, China
4Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), School of Physics, Beijing Institute of Technology, Beijing 100081, China
5Xi'an Modern Chemistry Research Institute, Xi'an 710065, China
6High Pressure Collaborative Access Team (HPCAT), Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA
7Songshan Lake Materials Laboratory, Dongguan 523808, China
8Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
Cite this article:   
Jun Zhang, Mei-Ling Jin, Xiang Li et al  2020 Chin. Phys. Lett. 37 087106
Download: PDF(2065KB)   PDF(mobile)(2160KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Recently, a series of novel compounds Ba$_{3}$MX$_{5}$ (M =  Fe, Ti, V; X = Se, Te) with hexagonal crystal structures composed of quasi-1-dimensional (1D) magnetic chains has been synthesized by our research team using high-pressure and high-temperature methods. The initial hexagonal phases persist to the maximum achievable pressure, while spin configurations and magnetic interactions may change dramatically as a result of considerable reductions in interchain separations upon pressurization. These compounds therefore offer unique possibilities for studying the evolution of intrinsic electronic structures in quasi-1D magnetic systems. Here we present a systematic investigation of Ba$_{9}$Fe$_{3}$Te$_{15}$, in which the interchain separations between trimerized 1D chains ($\sim $10.2 Å) can be effectively modulated by external high pressure. The crystal structure especially along the 1D chains exhibits an abnormal expansion at $\sim $5 GPa, which accompanies trimerization entangled anomalous mixed-high-low spin transition. An insulator-metal transition has been observed under high pressure as a result of charge-transfer gap closing. Pressure-induced superconductivity emerges at 26 GPa, where the charge-transfer gap fully closes, 3D electronic configuration forms and local spin fully collapses.
Received: 22 June 2020      Published: 19 July 2020
PACS:  71.27.+a (Strongly correlated electron systems; heavy fermions)  
  71.30.+h (Metal-insulator transitions and other electronic transitions)  
  74.62.Fj (Effects of pressure)  
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. U1930401, 11974410, 11820101003, 11921004 and 11534016), and the National Key R&D Program of China (Grant Nos. 2018YFA0305703, 2018YFA0305700 and 2017YFA0302900).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/8/087106       OR      https://cpl.iphy.ac.cn/Y2020/V37/I8/087106
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jun Zhang
Mei-Ling Jin
Xiang Li
Xian-Cheng Wang
Jian-Fa Zhao
Ying Liu
Lei Duan
Wen-Min Li
Li-Peng Cao
Bi-Juan Chen
Li-Juan Wang
Fei Sun
Yong-Gang Wang
Liu-Xiang Yang
Yu-Ming Xiao
Zheng Deng
Shao-Min Feng
Chang-Qing Jin
and Jin-Long Zhu
[1] Sun J P, Matsuura K, Ye G Z, Mizukami Y, Shimozawa M, Matsubayashi K, Yamashita M, Watashige T, Kasahara S, Matsuda Y, Yan J Q, Sales B C, Uwatoko Y, Cheng J G and Shibauchi T 2016 Nat. Commun. 7 12146
[2] Wu H, Zhou Y H, Yuan Y F, Chen C H, Zhou Y, Zhang B W, Chen X L, Gu C C, An C, Wang S Y, Qi M Y, Zhang R R, Zhang L L, Li X J and Yang Z R 2019 Chin. Phys. Lett. 36 107101
[3] Liu Z Y, Dong Q X, Shan P F, Wang Y Y, Dai J H, Jana R, Chen K Y, Sun J P, Wang B S, Yu X H, Liu G T, Uwatoko Y, Sui Y, Yang H X, Chen G F and Cheng J G 2020 Chin. Phys. Lett. 37 047102
[4] Pouget J P, Regnault L P, Ain M, Hennion B, Renard J P, Veillet P, Dhalenne G and Revcolevschi A 1994 Phys. Rev. Lett. 72 4037
[5] Zhang J, Jia Y, Wang X, Li Z, Duan L, Li W, Zhao J, Cao L, Dai G, Deng Z, Zhang S, Feng S, Yu R, Liu Q, Hu J, Zhu J and Jin C 2019 NPG Asia Mater. 11 11
[6]Zhang J, Wang X C, Adroja D T, Silva I d, Khalyavin D, Sannigrahi J, Nair H S, Duan L, Zhao J F, Deng Z, Yu R Z, Shen X, Yu R C, Zhao H, Zhao J M, Long Y W, Zhu J L, Hu Z W, Lin H J, Chen C T, Wu W and Jin C Q 2020 (submitted)
[7] Zhang J, Duan L, Wang Z, Wang X, Zhao J, Jin M, Li W, Zhang C, Cao L, Deng Z, Hu Z, Agrestini S, Valvidares M, Lin H J, Chen C T, Zhu J and Jin C 2020 Inorg. Chem. 59 5377
[8] Zhang J, Liu M, Wang X C, Zhao K, Li W M, Duan L, hao J F, Cao L P, Dai G Y, Deng Z, Zhang S J, Feng S M, Liu Q Q, Yang Y F and Jin C Q 2018 J. Phys.: Condens. Matter 30 214001
[9]Zhang J, Hao Y, Wang X, Liu M, Yang Y, Duan L, Jin M, Li W, Zhao J Z, Cao L, Deng Z, Zhu J and Jin C 2020 (submitted)
[10] Koga A 2002 Phys. Lett. A 296 243
[11] Nakamura H, Yamasaki T, Giri S, Imai H, Shiga M, Kojima K, Nishi M, Kakurai K and Metoki N 2000 J. Phys. Soc. Jpn. 69 2763
[12] Kelber J, Aldred A T, Lander G H, Mueller M H, Massenet O and Stucky G D 1980 J. Solid State Chem. 32 351
[13] Gauzzi F L A , Barisic N, Calestani G L, Bolzoni F, Gilioli E, Marezio M, Sanna A, Franchini C and Forro L 2003 Int. J. Mod. Phys. B 17 3503
[14] Yamasaki T, Nakamura H and Shiga M 2000 J. Phys. Soc. Jpn. 69 3068
[15] Graf T, Mandrus D, Lawrence J M, Thompson J D, Canfield P C, Cheong S W and Rupp L W 1995 Phys. Rev. B 51 2037
[16] Forro L, Gaal R, Berger H, Fazekas P, Penc K, Kezsmarki I and Mihaly G 2000 Phys. Rev. Lett. 85 1938
[17] Takahashi H, Sugimoto A, Nambu Y, Yamauchi T, Hirata Y, Kawakami T, Avdeev M, Matsubayashi K, Du F, Kawashima C, Soeda H, Nakano S, Uwatoko Y, Ueda Y, Sato T J and Ohgushi K 2015 Nat. Mater. 14 1008
[18] Yamauchi T, Hirata Y, Ueda Y and Ohgushi K 2015 Phys. Rev. Lett. 115 246402
[19] Ying J, Lei H, Petrovic C, Xiao Y and Struzhkin V V 2017 Phys. Rev. B 95 241109
[20]larson A C and Dreele R B V O N 2000 Los Alamos National Laboratory Report Laur 86
[21] Vankó G, Neisius T, Molnár G, Renz F, Kárpáti S, Shukla A and de Groot F M F 2006 J. Phys. Chem. B 110 11647
[22] Rueff J P and Kao C C 1999 Phys. Rev. Lett. 82 3284
[23] Peng G, Wang X, Randall C R, Moore J A and Cramer S P 1994 Appl. Phys. Lett. 65 2527
[24]http://abulafia.mt.ic.ac.uk/shannon/ptable.php
[25] Duan L, Zhang J, Wang X, Zhao J, Cao L, Li W, Deng Z, Yu R, Li Z and Jin C 2020 J. Alloys Compd. 831 154697
[26] Zaanen J, Sawatzky G A and Allen J W 1985 Phys. Rev. Lett. 55 418
[27]Chen A 1993 PhD Thesis (University of California)
[28] Giesekus A and Falicov L M 1991 Phys. Rev. B 44 10449
[29] Si Q and Abrahams E 2008 Phys. Rev. Lett. 101
[30] Yu R and Si Q M 2013 Phys. Rev. Lett. 110 146402
[31] de' Medici L, Giovannetti G and Capone M 2014 Phys. Rev. Lett. 112 177001
[32] Werthamer N R, Helfand E and Hohenberg P C 1966 Phys. Rev. 147 295
Related articles from Frontiers Journals
[1] Miao Xu, Changwei Zou, Benchao Gong, Ke Jia, Shusen Ye, Zhenqi Hao, Kai Liu, Youguo Shi, Zhong-Yi Lu, Peng Cai, and Yayu Wang. Tuning the Mottness in Sr$_{3}$Ir$_{2}$O$_{7}$ via Bridging Oxygen Vacancies[J]. Chin. Phys. Lett., 2023, 40(3): 087106
[2] A. Azarevich, N. Bolotina, O. Khrykina, A. Bogach, E. Zhukova, B. Gorshunov, A. Melentev, Z. Bedran, A. Alyabyeva, M. Belyanchikov, V. Voronov, N. Yu. Shitsevalova, V. B. Filipov, and N. Sluchanko. Erratum: Evidence of Electronic Phase Separation in the Strongly Correlated Semiconductor YbB$_{12}$ [Chin. Phys. Lett. 39, 127302 (2022)][J]. Chin. Phys. Lett., 2023, 40(2): 087106
[3] Kun Jiang. Correlation Renormalized and Induced Spin-Orbit Coupling[J]. Chin. Phys. Lett., 2023, 40(1): 087106
[4] A. Azarevich, N. Bolotina, O. Khrykina, A. Bogach, E. Zhukova, B. Gorshunov, A. Melentev, Z. Bedran, A. Alyabyeva, M. Belyanchikov, V. Voronov, N. Yu. Shitsevalova, V. B. Filipov, and N. Sluchanko. Evidence of Electronic Phase Separation in the Strongly Correlated Semiconductor YbB$_{12}$[J]. Chin. Phys. Lett., 2022, 39(12): 087106
[5] Neng Xie, Danqing Hu, Shu Chen, and Yi-feng Yang. Evolution of Topological End States in the One-Dimensional Kondo–Heisenberg Model with Site Modulation[J]. Chin. Phys. Lett., 2022, 39(11): 087106
[6] Xingyu Wang, Dongliang Gong, Bo Liu, Xiaoyan Ma, Jinyu Zhao, Pengyu Wang, Yutao Sheng, Jing Guo, Liling Sun, Wen Zhang, Xinchun Lai, Shiyong Tan, Yi-feng Yang, and Shiliang Li. In-Plane Anisotropic Response to Uniaxial Pressure in the Hidden Order State of URu$_2$Si$_2$[J]. Chin. Phys. Lett., 2022, 39(10): 087106
[7] Y. E. Huang, F. Wu, A. Wang, Y. Chen, L. Jiao, M. Smidman, and H. Q. Yuan. Pressure Evolution of the Magnetism and Fermi Surface of YbPtBi Probed by a Tunnel Diode Oscillator Based Method[J]. Chin. Phys. Lett., 2022, 39(9): 087106
[8] Yunchao Hao, Gaopei Pan, Kai Sun, Zi Yang Meng, and Yang Qi. Superconductivity near the (2+1)-Dimensional Ferromagnetic Quantum Critical Point[J]. Chin. Phys. Lett., 2022, 39(9): 087106
[9] Jian-Keng Yuan, Shuai A. Chen, and Peng Ye. Quantum Hydrodynamics of Fractonic Superfluids with Lineon Condensate: From Navier–Stokes-Like Equations to Landau-Like Criterion[J]. Chin. Phys. Lett., 2022, 39(5): 087106
[10] Bin-Bin Ruan, Meng-Hu Zhou, Qing-Song Yang, Ya-Dong Gu, Ming-Wei Ma, Gen-Fu Chen, and Zhi-An Ren. Superconductivity with a Violation of Pauli Limit and Evidences for Multigap in $\eta$-Carbide Type Ti$_4$Ir$_2$O[J]. Chin. Phys. Lett., 2022, 39(2): 087106
[11] Haiwei Li, Shusen Ye, Jianfa Zhao, Changqing Jin, and Yayu Wang. Temperature Dependence of the Electronic Structure of Ca$_{3}$Cu$_{2}$O$_{4}$Cl$_{2}$ Mott Insulator[J]. Chin. Phys. Lett., 2022, 39(1): 087106
[12] Qiangwei Yin, Zhijun Tu, Chunsheng Gong, Shangjie Tian, and Hechang Lei. Structures and Physical Properties of V-Based Kagome Metals CsV$_{6}$Sb$_{6}$ and CsV$_{8}$Sb$_{12}$[J]. Chin. Phys. Lett., 2021, 38(12): 087106
[13] Yunqing Ouyang, Qing-Rui Wang, Zheng-Cheng Gu, and Yang Qi. Computing Classification of Interacting Fermionic Symmetry-Protected Topological Phases Using Topological Invariants[J]. Chin. Phys. Lett., 2021, 38(12): 087106
[14] Chuang Xie, Ling Hu, Ran-Ran Zhang, Shun-Jin Zhu, Min Zhu, Ren-Huai Wei, Xian-Wu Tang, Wen-Hai Song, Xue-Bin Zhu, and Yu-Ping Sun. Concurrent Structural and Electronic Phase Transitions in V$_2$O$_3$ Thin Films with Sharp Resistivity Change[J]. Chin. Phys. Lett., 2021, 38(7): 087106
[15] Zhao-Long Gu and Jian-Xin Li. Itinerant Topological Magnons in SU(2) Symmetric Topological Hubbard Models with Nearly Flat Electronic Bands[J]. Chin. Phys. Lett., 2021, 38(5): 087106
Viewed
Full text


Abstract