Chin. Phys. Lett.  2020, Vol. 37 Issue (8): 087104    DOI: 10.1088/0256-307X/37/8/087104
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Predicting the Potential Performance in P-Type SnS Crystals via Utilizing the Weighted Mobility and Quality Factor
Wenke He , Bingchao Qin , and Li-Dong Zhao*
School of Materials Science and Engineering, Beihang University, Beijing 100191, China
Cite this article:   
Wenke He , Bingchao Qin , and Li-Dong Zhao 2020 Chin. Phys. Lett. 37 087104
Download: PDF(774KB)   PDF(mobile)(772KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The figure of merit $ZT$ is the direct embodiment of thermoelectric performance for a given material. However, as an indicator of performance improvement, the only $ZT$ value is not good enough to identify its outstanding inherent properties, which are highly sought in thermoelectric community. Here, we utilize one powerful parameter to reveal the outstanding properties of a given material. The weighted mobility is used to estimate the carrier transports of p-type SnS crystals, including the differences in doping level, carrier scattering and electronic band structure. We analyze the difference in carrier scattering mechanism for different crystal forms with the same doping level, then evaluate and confirm the temperature-dependent evolution of electronic band structures in SnS. Finally, we calculate the quality factor $B$ based on the weighted mobility, and establish the relationship between $ZT$ and $B$ to further predict the potential performance in p-type SnS crystals with low cost and earth abundance, which can be realized through taking advantage of the inherent material property, thus improving $B$ factor to achieve optimal thermoelectric level.
Received: 24 June 2020      Published: 12 July 2020
PACS:  71.20.-b (Electron density of states and band structure of crystalline solids)  
  72.20.Pa (Thermoelectric and thermomagnetic effects)  
  84.60.Rb (Thermoelectric, electrogasdynamic and other direct energy conversion)  
Fund: Supported by the National Key Research and Development Program of China (Grant Nos. 2018YFA0702100 and 2018YFB0703600), the National Natural Science Foundation of China (Grant Nos. 51632005 and 51772012), the Beijing Natural Science Foundation (Grant No. JQ18004), the Shenzhen Peacock Plan Team (Grant No. KQTD2016022619565991), 111 Project (Grant No. B17002), and the National Science Fund for Distinguished Young Scholars (Grant No. 51925101).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/8/087104       OR      https://cpl.iphy.ac.cn/Y2020/V37/I8/087104
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Wenke He 
Bingchao Qin 
and Li-Dong Zhao
[1] He J and Tritt T M 2017 Science 357 eaak9997
[2] Snyder G J and Toberer E S 2008 Nat. Mater. 7 105
[3] Zhang X and Zhao L D 2015 J. Materiomics 1 92
[4] Qin B C, Xiao Y, Zhou Y M and Zhao L D 2018 Rare Met. 37 343
[5] Gao L, Liu Q L, Yang J W, Wu Y, Liu Z H, Qin S J, Ye X B, Jin S F, Li G D, Zhao H Z and Long Y W 2020 Chin. Phys. Lett. 37 066202
[6] Zhou K, Zhang T, Liu B and Yao Y J 2020 Chin. Phys. Lett. 37 017102
[7] Wei T R, Wu C F, Li F and Li J F 2018 J. Materiomics 4 304
[8] Xiao Y and Zhao L D 2020 Science 367 1196
[9] Zhao L D, Lo S H, Zhang Y, Sun H, Tan G, Uher C, Wolverton C, Dravid V P and Kanatzidis M G 2014 Nature 508 373
[10] Zhou Y and Zhao L D 2017 Adv. Mater. 29 1702676
[11] Shang P P, Dong J, Pei J, Sun F H, Pan Y, Tang H, Zhang B P, Zhao L D and Li J F 2019 Research 2019 1
[12] Zhou L Y, Zheng Q, Bao L H and Liang W J 2020 Chin. Phys. Lett. 37 017301
[13] Tan Q and Li J F 2014 J. Electron. Mater. 43 2435
[14] Tan Q, Zhao L D, Li J F, Wu C F, Wei T R, Xing Z B and Kanatzidis M G 2014 J. Mater. Chem. A 2 17302
[15] Chattopadhyay T, Pannetier J and Von Schnering H G 1986 J. Phys. Chem. Solids 47 879
[16] Shafique A and Shin Y H 2017 Sci. Rep. 7 10
[17] He W, Wang D, Dong J F, Qiu Y, Fu L, Feng Y, Hao Y J, Wang G T, Wang J F, Liu C, Li J F, He J Q and Zhao L D 2018 J. Mater. Chem. A 6 10048
[18] Zhao L D, Chang C, Tan G and Kanatzidis M G 2016 Energy & Environ. Sci. 9 3044
[19] Qu W W, Zhang X X, Yuan B F and Zhao L D 2018 Rare Met. 37 79
[20] Chang C and Zhao L D 2018 Mater. Today Phys. 4 50
[21] Feng B, Li G Q, Hu X M, Liu P H, Li R S, Zhang Y L, Li Y W, He Z and Fan X A 2020 Chin. Phys. Lett. 37 037201
[22] Volykhov A A, Shtanov V I and Yashina L V 2008 Inorg. Mater. 44 345
[23] Parker D and Singh D J 2010 J. Appl. Phys. 108 083712
[24] Hao S, Dravid V P, Kanatzidis M G and Wolverton C 2016 APL Mater. 4 104505
[25] Wu H, Lu X, Wang G, Peng K, Chi H, Zhang B, Chen Y, Li C, Yan Y, Guo L, Uher C, Zhou X and Han X 2018 Adv. Energy Mater. 8 1800087
[26] Zhou B, Li S, Li W, Li J, Zhang X, Lin S, Chen Z and Pei Y 2017 ACS Appl. Mater. & Interfaces 9 34033
[27] Tang H, Dong J F, Sun F H, Asfandiyar, Shang P and Li J F 2019 Sci. Chin. Mater. 62 7
[28] Wang Z, Wang D, Qiu Y, He J and Zhao L D 2019 J. Alloys Compd. 789 485
[29] Yang H Q, Wang X Y, Wu H, Zhang B, Xie D D, Chen Y J, Lu X, Han X D, Miao L and Zhou X Y 2019 J. Mater. Chem. C 7 3351
[30] He W, Wang D, Wu H et al. 2019 Science 365 1418
[31] Snyder G J, Snyder A H, Wood M, Gurunathan R, Snyder B H and Niu C 2020 Adv. Mater. 32 2001537
[32] Imasato K, Fu C, Pan Y, Wood M, Kuo J J, Felser C and Snyder G J 2020 Adv. Mater. 32 1908218
[33] Slade T J, Grovogui J A, Kuo J J, Anand S, Bailey T P, Wood M, Uher C, Snyder G J, Dravid V P and Kanatzidis M G 2020 Energy & Environ. Sci. 13 1509
[34] Qin B, He W and Zhao L D 2020 J. Materiomics DOI:10.1016/j.jmat.2020.06.003
[35] May A F, Toberer E S, Saramat A and Snyder G J 2009 Phys. Rev. B 80 125205
[36] Xie H H, Wang H, Fu C, Liu Y, Snyder G J, Zhao X and Zhu T 2015 Sci. Rep. 4 6888
[37] Mao J, Shuai J, Song S et al. 2017 Proc. Natl. Acad. Sci. USA 114 10548
[38]May A F and Snyder G J 2017 Materials, Preparation, and Characterization in Thermoelectrics (CRC press) p. 11
[39] Kang S D and Snyder G J 2017 arXiv:1710.06896 [cond-mat.mtrl-sci]
[40] Kang S D and Snyder G J 2017 Nat. Mater. 16 252
Related articles from Frontiers Journals
[1] Chuli Sun, Wei Guo, and Yugui Yao. Predicted Pressure-Induced High-Energy-Density Iron Pentazolate Salts[J]. Chin. Phys. Lett., 2022, 39(8): 087104
[2] Sheng Wang, Zia ur Rehman, Zhanfeng Liu, Tongrui Li, Yuliang Li, Yunbo Wu, Hongen Zhu, Shengtao Cui, Yi Liu, Guobin Zhang, Li Song, and Zhe Sun. Tailoring of Bandgap and Spin-Orbit Splitting in ZrSe$_{2}$ with Low Substitution of Ti for Zr[J]. Chin. Phys. Lett., 2022, 39(7): 087104
[3] Lulu Liu, Shoutao Zhang, and Haijun Zhang. Pressure-Driven Ne-Bearing Polynitrides with Ultrahigh Energy Density[J]. Chin. Phys. Lett., 2022, 39(5): 087104
[4] Kun Luo, Baozhong Li, Lei Sun, Yingju Wu, Yanfeng Ge, Bing Liu, Julong He, Bo Xu, Zhisheng Zhao, and Yongjun Tian. Novel Boron Nitride Polymorphs with Graphite-Diamond Hybrid Structure[J]. Chin. Phys. Lett., 2022, 39(3): 087104
[5] Bin Han, Junjie Zeng, and Zhenhua Qiao. In-Plane Magnetization-Induced Corner States in Bismuthene[J]. Chin. Phys. Lett., 2022, 39(1): 087104
[6] Zhe Huang, Xianbiao Shi, Gaoning Zhang, Zhengtai Liu, Soohyun Cho, Zhicheng Jiang, Zhonghao Liu, Jishan Liu, Yichen Yang, Wei Xia, Weiwei Zhao, Yanfeng Guo, and Dawei Shen. Photoemission Spectroscopic Evidence of Multiple Dirac Cones in Superconducting BaSn$_3$[J]. Chin. Phys. Lett., 2021, 38(10): 087104
[7] Wen-Han Dong, De-Liang Bao, Jia-Tao Sun, Feng Liu, and Shixuan Du. Manipulation of Dirac Fermions in Nanochain-Structured Graphene[J]. Chin. Phys. Lett., 2021, 38(9): 087104
[8] Yi Jiang, Zhong Fang, and Chen Fang. A $\boldsymbol{k}$$\cdot$$\boldsymbol{p}$ Effective Hamiltonian Generator[J]. Chin. Phys. Lett., 2021, 38(7): 087104
[9] Zhilin Xu, Shuai-Hua Ji, Lin Tang, Jian Wu, Na Li, Xinqiang Cai, and Xi Chen. Molecular Beam Epitaxy Growth and Electronic Structures of Monolayer GdTe$_{3}$[J]. Chin. Phys. Lett., 2021, 38(7): 087104
[10] Shuai Liu, Si-Min Nie, Yan-Peng Qi, Yan-Feng Guo, Hong-Tao Yuan, Le-Xian Yang, Yu-Lin Chen, Mei-Xiao Wang, and Zhong-Kai Liu. Measurement of Superconductivity and Edge States in Topological Superconductor Candidate TaSe$_{3}$[J]. Chin. Phys. Lett., 2021, 38(7): 087104
[11] Yongqing Cai, Tao Xie, Huan Yang, Dingsong Wu, Jianwei Huang, Wenshan Hong, Lu Cao, Chang Liu, Cong Li, Yu Xu, Qiang Gao, Taimin Miao, Guodong Liu, Shiliang Li, Li Huang, Huiqian Luo, Zuyan Xu, Hongjun Gao, Lin Zhao, and X. J. Zhou. Common ($\pi$,$\pi$) Band Folding and Surface Reconstruction in FeAs-Based Superconductors[J]. Chin. Phys. Lett., 2021, 38(5): 087104
[12] Zhenjiang Han, Han Liu, Quan Li, Dan Zhou, and Jian Lv. Superior Mechanical Properties of GaAs Driven by Lattice Nanotwinning[J]. Chin. Phys. Lett., 2021, 38(4): 087104
[13] Yun-Xian Liu , Chao Wang, Shuai Han , Xin Chen , Hai-Rui Sun , and Xiao-Bing Liu. Novel Superconducting Electrides in Ca–S System under High Pressures[J]. Chin. Phys. Lett., 2021, 38(3): 087104
[14] Chen Qiu, Ruyue Cao, Cai-Xin Zhang, Chen Zhang, Dan Guo, Tao Shen, Zhu-You Liu, Yu-Ying Hu, Fei Wang, and Hui-Xiong Deng. First-Principles Study of Intrinsic Point Defects of Monolayer GeS[J]. Chin. Phys. Lett., 2021, 38(2): 087104
[15] Xingyong Huang, Liujiang Zhou, Luo Yan, You Wang, Wei Zhang, Xiumin Xie, Qiang Xu, and Hai-Zhi Song. HfX$_{2}$ (X = Cl, Br, I) Monolayer and Type II Heterostructures with Promising Photovoltaic Characteristics[J]. Chin. Phys. Lett., 2020, 37(12): 087104
Viewed
Full text


Abstract