Chin. Phys. Lett.  2020, Vol. 37 Issue (7): 077801    DOI: 10.1088/0256-307X/37/7/077801
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Multiplexed Metasurfaces for High-Capacity Printing Imaging
Zhenyu Fang , Haofei Xu , Yaqin Zheng , Yuelin Chen , and Zhang-Kai Zhou*
State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
Cite this article:   
Zhenyu Fang , Haofei Xu , Yaqin Zheng  et al  2020 Chin. Phys. Lett. 37 077801
Download: PDF(2355KB)   PDF(mobile)(2348KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We successfully overcome the problem of cross-talk in multiplexed metasurface design and realize the multiplexed metasurface with five printing images in both theoretical and experimental aspects, by employing the coherent pixel design considering coherent superposition of all the sub-elements. Compared with most previous studies where the integrated printing images were usually no more than three, our study shows obvious improvement. More importantly, in our approach all the sub-elements, which were crystalline silicon nanobricks with the size of $320\times 80\times 230$ nm$^{3}$, were arranged in a square space of $1.45 \times 1.45$ μm$^{2}$ following the closest packing way, enabling our multiplexed metasurface to have a potential of effective physical information capacity of printing image reaching the optical diffraction limit. Our study not only enlarges the information capacity of metasurfaces by expanding the integrated number of printing image in one metasurface, but also can promote metasurface applications in various fields such as information storage and encoding.
Received: 27 March 2020      Published: 21 June 2020
PACS:  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
  78.67.-n (Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)  
  78.68.+m (Optical properties of surfaces)  
  42.82.-m (Integrated optics)  
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 11974437 and 61675237), the Guangdong Natural Science Funds for Distinguished Young Scholars (Grant No. 2017B030306007), the Guangdong Special Support Program (Grant No. 2017TQ04C487), and the Pearl River S&T Nova Program of Guangzhou (Grant No. 201806010033).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/7/077801       OR      https://cpl.iphy.ac.cn/Y2020/V37/I7/077801
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zhenyu Fang 
Haofei Xu 
Yaqin Zheng 
Yuelin Chen 
and Zhang-Kai Zhou
[1] Ozbay E 2006 Science 311 189
[2] Shaikh K A et al. 2005 Proc. Natl. Acad. Sci. USA 102 9745
[3] Zhou Z K et al. 2019 Prog. Quantum Electron. 65 1
[4] Qu C et al. 2015 Phys. Rev. Lett. 115 235503
[5] Liang H W et al. 2018 Nano Lett. 18 4460
[6] Chen W T et al. 2018 Nat. Nanotechnol. 13 220
[7] Wang S et al. 2018 Nat. Nanotechnol. 13 227
[8] Khorasaninejad M et al. 2016 Science 352 1190
[9] Yue F et al. 2017 Adv. Mater. 29 1603838
[10] Zeng J, Li L, Yang X and Gao J 2016 Nano Lett. 16 3101
[11] Bao Y J, Ni J C and Qiu C W 2020 Adv. Mater. 32 1905659
[12] Yin X B et al. 2013 Science 339 1405
[13] Ning R X, Jiao Z and Bao J 2017 Chin. Phys. Lett. 34 107801
[14] Lin D et al. 2014 Science 345 298
[15] Li P N et al. 2018 Science 359 892
[16] Tittl A et al. 2018 Science 360 1105
[17] Lin B Q et al. 2018 Chin. Phys. B 27 054204
[18] Jalil S A et al. 2017 Chin. Phys. Lett. 34 088102
[19] Li Z, Liu W, Cheng H et al. 2019 Adv. Opt. Mater. 7 1900260
[20] Ma M et al. 2019 Laser & Photon. Rev. 13 1900045
[21] Kristensen A et al. 2017 Nat. Rev. Mater. 2 16088
[22] Ito M M et al. 2019 Nature 570 363
[23] Zheng G X et al. 2015 Nat. Nanotechnol. 10 308
[24] Wei Z Q et al. 2017 Small 13 1700109
[25] Liu H C et al. 2017 Sci. Adv. 3 e1701477
[26]Li J X et al. 2018 Sci. Adv. 4 eear6768
[27] Hu D J et al. 2018 ACS Nano 12 9233
[28] Luo X H et al. 2020 Adv. Opt. Mater. 8 1902020
[29] Fan Y B et al. 2019 Nat. Commun. 10 2085
[30] Xue J C et al. 2019 Light: Sci. & Appl. 8 101
[31] Liu H L et al. 2019 Adv. Mater. 31 1807900
[32] Jin L et al. 2018 Nano Lett. 18 8016
[33] Lin Z M et al. 2019 Adv. Opt. Mater. 7 1900782
[34] Bao Y J et al. 2018 Adv. Funct. Mater. 28 1805306
[35] Bao Y J et al. 2019 Light: Sci. & Appl. 8 95
[36] Li Z, Clark A W and Cooper J M 2016 ACS Nano 10 492
[37] Sung, Lee G Y J and Lee B 2020 Nanophotonics 8 1701
[38] Chen S et al. 2020 Adv. Mater. 32 1805912
[39]Palik E D 1985 Handbook of Optical Constants of Solids (New York: Academic Press)
Related articles from Frontiers Journals
[1] Xiang Xiong, Zhao-Yuan Zeng, Ruwen Peng, and Mu Wang. Directional Chiral Optical Emission by Electron-Beam-Excited Nano-Antenna[J]. Chin. Phys. Lett., 2023, 40(1): 077801
[2] Pei-Chao Cao, Yu-Gui Peng, Ying Li, and Xue-Feng Zhu. Phase-Locking Diffusive Skin Effect[J]. Chin. Phys. Lett., 2022, 39(5): 077801
[3] Peng Chen, Xianglin Kong, Jianfei Han, Weihua Wang, Kui Han, Hongyu Ma, Lei Zhao, and Xiaopeng Shen. Wide-Angle Ultra-Broadband Metamaterial Absorber with Polarization-Insensitive Characteristics[J]. Chin. Phys. Lett., 2021, 38(2): 077801
[4] Quan-Wen Hou, Jia-Chi Li , and Xiao-Peng Zhao . Isotropic Thermal Cloaks with Thermal Manipulation Function[J]. Chin. Phys. Lett., 2021, 38(1): 077801
[5] Xueyan Li, Han Lin, Yuejin Zhao, and Baohua Jia. Diffraction-Limited Imaging with a Graphene Metalens[J]. Chin. Phys. Lett., 2020, 37(10): 077801
[6] Yanyan Cao, Bocheng Yu, Yangyang Fu, Lei Gao, and Yadong Xu. Phase-Gradient Metasurfaces Based on Local Fabry–Pérot Resonances[J]. Chin. Phys. Lett., 2020, 37(9): 077801
[7] Meng-Yao Yan , Bi-Jun Xu, Zhi-Chao Sun , Zhen-Dong Wu , Bai-Rui Wu . Terahertz Perfect Absorber Based on Asymmetric Open-Loop Cross-Dipole Structure[J]. Chin. Phys. Lett., 2020, 37(6): 077801
[8] Chen Huang , Qian-Ju Song , Peng Hu , Shi-Wei Dai , Hong Xiang, Dezhuan Han. Bound States in the Continuum in One-Dimensional Dimerized Plasmonic Gratings[J]. Chin. Phys. Lett., 2020, 37(6): 077801
[9] Meng-Yao Yan , Bi-Jun Xu, Zhi-Chao Sun , Zhen-Dong Wu , Bai-Rui Wu . Terahertz Perfect Absorber Based on Asymmetric Open-Loop Cross-Dipole Structure[J]. Chin. Phys. Lett., 0, (): 077801
[10] Chen Huang , Qian-Ju Song , Peng Hu , Shi-Wei Dai , Hong Xiang, Dezhuan Han. Bound States in the Continuum in One-Dimensional Dimerized Plasmonic Gratings *[J]. Chin. Phys. Lett., 0, (): 077801
[11] Shuai-Meng Wang, Xiao-Hong Sun, De-Li Chen, Fan Wu. GaP-Based High-Efficiency Elliptical Cylinder Metasurface in Visible Light[J]. Chin. Phys. Lett., 2020, 37(5): 077801
[12] Bin Sun, Fei-Feng Xie, Shuai Kang, You-chang Yang, Jian-Qiang Liu. A Novel Method for PIT Effects Based on Plasmonic Decoupling[J]. Chin. Phys. Lett., 2019, 36(1): 077801
[13] Hao-Jing Zhang, Gai-Ge Zheng, Yun-Yun Chen, Xiu-Juan Zou, Lin-Hua Xu. A Perfect Graphene Absorber with Waveguide Coupled High-Contrast Gratings[J]. Chin. Phys. Lett., 2018, 35(3): 077801
[14] Ren-Xia Ning, Zheng Jiao, Jie Bao. Narrow and Dual-Band Tunable Absorption of a Composite Structure with a Graphene Metasurface[J]. Chin. Phys. Lett., 2017, 34(10): 077801
[15] Kai-Lun Zhang, Zhi-Ling Hou, Ling-Bao Kong, Hui-Min Fang, Ke-Tao Zhan. Origin of Negative Imaginary Part of Effective Permittivity of Passive Materials[J]. Chin. Phys. Lett., 2017, 34(9): 077801
Viewed
Full text


Abstract