Chin. Phys. Lett.  2020, Vol. 37 Issue (6): 066802    DOI: 10.1088/0256-307X/37/6/066802
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Symmetry Breaking and Reversible Hydrogenation of Two-Dimensional Semiconductor Sn$_{2}$Bi
Xuguang Wang1,2, Bingyu Xia3, Jian Gou1,2, Peng Cheng1,2, Yong Xu3, Lan Chen1,2**, Kehui Wu1,2,4**
1Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2School of Physics, University of Chinese Academy of Sciences, Beijing 100049, China
3Department of Physics, Tsinghua University, Beijing 100084, China
4Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
Cite this article:   
Xuguang Wang, Bingyu Xia, Jian Gou et al  2020 Chin. Phys. Lett. 37 066802
Download: PDF(1320KB)   PDF(mobile)(1316KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The hydrogenation of two-dimensional (2D) systems can efficiently modify the physical and chemical properties of materials. Here we report a systematic study on the hydrogenation of 2D semiconductor Sn$_{2}$Bi on Si(111) by scanning tunneling microscopy experiments and first principle calculations. The unique butterfly-like and trench-like features were observed for single H adsorption sites and hydrogen-saturated surfaces respectively, from which the bridge-site adsorption geometry can be unambiguously determined. The structural model was further confirmed by the theoretical calculations, which is in good agreement with the experimental observation. In addition, the hydrogenation is found to vanish the flat band of Sn$_{2}$Bi and increase the band gap obviously.
Received: 23 April 2020      Published: 26 May 2020
PACS:  68.35.bg (Semiconductors)  
  68.37.Ef (Scanning tunneling microscopy (including chemistry induced with STM))  
Fund: *Supported by the National Key Research and Development Program of China (Grant Nos. 2018YFE0202700, 2016YFA0202301, and 2016YFA0300904), the National Natural Science Foundation of China (Grant Nos. 11761141013, 11674366, 11825405, and 11674368), the Beijing Municipal Natural Science Foundation (Grant No. Z180007), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB30103000).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/6/066802       OR      https://cpl.iphy.ac.cn/Y2020/V37/I6/066802
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xuguang Wang
Bingyu Xia
Jian Gou
Peng Cheng
Yong Xu
Lan Chen
Kehui Wu
[1] Christmann K 1988 Surf. Sci. Rep. 9 1
[2] Kraus A, Hanbucken M, Neddermeyer H 2002 Anal. Bioanal. Chem. 374 688
[3] Mayne A J, Riedel D, Dujardin G 2006 Prog. Surf. Sci. 81 1
[4] Balog R, Jorgensen B, Wells J, Laegsgaard E, Hofmann P, Hornekaer L 2009 J. Am. Chem. Soc. 131 8744
[5] Qiu J, Fu H, Xu Y, Oreshkin A I, Shao T, Li H, Meng S, Wu K 2015 Phys. Rev. Lett. 114 126101
[6] Qiu J L, Fu H X, Xu Y, Zhou Q, Meng S, Li H, Wu K H 2015 ACS Nano 9 11192
[7] Boland J J 1991 Surf. Sci. 244 1
[8] Balog R, Jorgensen B, Nilsson L, Andersen M, Rienks E, Bianchi M, Fanetti M, Laegsgaard E, Baraldi A, Lizzit S, Sljivancanin Z, Besenbacher F, Hammer B, Pedersen T G, Hornekaer L 2010 Nat. Mater. 9 315
[9] Sofo J O, Barber G D 2007 Phys. Rev. B 75 153401
[10] Bobrov K, Mayne A, Comtet G, Hellner L 2003 Phys. Rev. B 68 195416
[11] Freitas R R Q, Rivelino R, de Brito Mota F, de Castilho C M C, Gueorguiev G K 2015 J. Phys. Chem. C 119 23599
[12] Fukuda T, Nakayama H 2006 Surf. Sci. 600 2443
[13] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Firsov A A 2004 Science 306 666
[14] Feng B J, Ding Z J, Meng S, Yao Y G, He X Y, Cheng P, Wu K H 2012 Nano Lett. 12 3507
[15] Zhu F F, Chen W J, Xu Y, Gao C L, Guan D D, Liu C H, Qian D, Jia J F 2015 Nat. Mater. 14 1020
[16] Gou J, Kong L, Li H, Zhong Q, Li W, Cheng P, Chen L and Wu K 2017 Phys. Rev. Mater. 1 054004
[17] Deng J, Xia B, Ma X, Chen H, Shan H, Zhai X, Li B, Xu Y and Duan W 2018 Nat. Mater. 17 1081
[18] Gou J, Xia B, Li H, Wang X, Kong L, Cheng P, Li H, Zhang W, Qian T, Ding H, Xu Y, Duan W, Chen L 2018 Phys. Rev. Lett. 121 126801
[19] Ding Y and Wang Y 2019 Appl. Phys. Lett. 114 073103
[20] Vishkayi S I and Tagani M B 2020 J. Appl. Phys. 127 014302
[21] Li T, Yu J, Zhang B and Sun Q 2020 Nano Energy 67 104283
[22] Gou J, Kong L J, Li W B, Sheng S X, Li H, Meng S, Cheng P, Chen L 2018 Phys. Chem. Chem. Phys. 20 20188
Related articles from Frontiers Journals
[1] Xuguang Wang, Bingyu Xia, Jian Gou, Peng Cheng, Yong Xu, Lan Chen, Kehui Wu. Symmetry Breaking and Reversible Hydrogenation of Two-Dimensional Semiconductor Sn$_{2}$Bi *[J]. Chin. Phys. Lett., 0, (): 066802
[2] Yan Gong, Jingwen Guo, Jiaheng Li, Kejing Zhu, Menghan Liao, Xiaozhi Liu, Qinghua Zhang, Lin Gu, Lin Tang, Xiao Feng, Ding Zhang, Wei Li, Canli Song, Lili Wang, Pu Yu, Xi Chen, Yayu Wang, Hong Yao, Wenhui Duan, Yong Xu, Shou-Cheng Zhang, Xucun Ma, Qi-Kun Xue, Ke He. Experimental Realization of an Intrinsic Magnetic Topological Insulator[J]. Chin. Phys. Lett., 2019, 36(7): 066802
[3] Gaoyuan Jiang, Yang Feng, Weixiong Wu, Shaorui Li, Yunhe Bai, Yaoxin Li, Qinghua Zhang, Lin Gu, Xiao Feng, Ding Zhang, Canli Song, Lili Wang, Wei Li, Xu-Cun Ma, Qi-Kun Xue, Yayu Wang, Ke He. Quantum Anomalous Hall Multilayers Grown by Molecular Beam Epitaxy[J]. Chin. Phys. Lett., 2018, 35(7): 066802
[4] Si-Min Huang, Bo Qian, Ruo-Xi Shen, Yong-Lin Xie. Nonlinear Doping, Chemical Passivation and Photoluminescence Mechanism in Water-Soluble Silicon Quantum Dots by Mechanochemical Synthesis[J]. Chin. Phys. Lett., 2018, 35(3): 066802
[5] Xin-Yi Yang, Guan-Yong Wang, Chen-Xiao Zhao, Zhen Zhu, Lu Dong, Ai-Min Li, Yang-Yang Lv, Shu-Hua Yao, Yan-Bin Chen, Dan-Dan Guan, Yao-Yi Li, Hao Zheng, Dong Qian, Canhua Liu, Yu-Lin Chen, Jin-Feng Jia. Surface Structure and Reconstructions of HgTe (111) Surfaces[J]. Chin. Phys. Lett., 2018, 35(2): 066802
[6] N. Panahi, M. T. Hosseinnejad, M. Shirazi, M. Ghoranneviss. Optimization of Gas Sensing Performance of Nanocrystalline SnO$_{2}$ Thin Films Synthesized by Magnetron Sputtering[J]. Chin. Phys. Lett., 2016, 33(06): 066802
[7] HE Xiao-Min, CHEN Zhi-Ming, LI Lian-Bi. Relaxation of 6H-SiC (0001) Surface and Si Adsorption on 6H-SiC (0001): an ab initio Study[J]. Chin. Phys. Lett., 2015, 32(03): 066802
[8] LIU Xiao-Juan, CAO Wen-Qiang, HUANG Zi-Han, YUAN Jie, FANG Xiao-Yong, CAO Mao-Sheng. Electronic Structures and Adsorption of Li-Doped Graphenes for CO[J]. Chin. Phys. Lett., 2015, 32(03): 066802
[9] LUO Jie-Xin, CHEN Jing, CHAI Zhan, L Kai, HE Wei-Wei, YANG Yan, WANG Xi. The Impact of Shallow-Trench-Isolation Mechanical Stress on the Hysteresis Effect of Partially Depleted Silicon-on-Insulator n-Type Metal-Oxide-Semiconductor Field Effects[J]. Chin. Phys. Lett., 2014, 31(12): 066802
[10] FENG Xiang-Xu, LIU Nai-Xin, ZHANG Ning, WEI Tong-Bo, WANG Jun-Xi, LI Jin-Min. Effect of Stress in GaN/AlInGaN Grown on GaN Templates with Different Stress States[J]. Chin. Phys. Lett., 2014, 31(05): 066802
[11] SUN Bing, CHANG Hu-Dong, LU Li, LIU Hong-Gang, WU De-Xin. High-Quality Single Crystalline Ge(111) Growth on Si(111) Substrates by Solid Phase Epitaxy[J]. Chin. Phys. Lett., 2012, 29(3): 066802
[12] MENG Xiu-Qing**, FANG Yun-Zhang, WU Feng-Min. Amphiphilic Bio-molecules/ZnO Interface: Enhancement of Bio-affinity and Dispersibility[J]. Chin. Phys. Lett., 2012, 29(1): 066802
[13] LIU Yan, AO Zhi-Min**, WANG Tao**, WANG Wen-Bo, SHENG Kuang, YU Bin, . Transformation from AA to AB-Stacked Bilayer Graphene on α−SiO2 under an Electric Field[J]. Chin. Phys. Lett., 2011, 28(8): 066802
[14] ZHONG Ze, SUN Li-Jie, CHEN Xiao-Qing, WU Xiao-Peng, FU Zhu-Xi. Effect of Zn Interstitials on Enhancing Ultraviolet Emission of ZnO Films Deposited by MOCVD[J]. Chin. Phys. Lett., 2010, 27(9): 066802
[15] FU Ying-Shuang, JI Shuai-Hua, ZHANG Tong, CHEN Xi, JIA Jin-Feng, XUE Qi-Kun, MA Xu-Cun . Modifying Quantum Well States of Pb Thin Films via Interface Engineering[J]. Chin. Phys. Lett., 2010, 27(6): 066802
Viewed
Full text


Abstract