Chin. Phys. Lett.  2019, Vol. 36 Issue (11): 117303    DOI: 10.1088/0256-307X/36/11/117303
Experimental Evidence of Topological Surface States in Mg$_{3}$Bi$_{2}$ Films Grown by Molecular Beam Epitaxy
Tong Zhou1,2,3,4†, Xie-Gang Zhu2,4†, Mingyu Tong5†, Yun Zhang2,4, Xue-Bing Luo2,4, Xiangnan Xie1, Wei Feng2,4, Qiuyun Chen2,4, Shiyong Tan2,4, Zhen-Yu Wang1,3,7**, Tian Jiang1,5, Yuhua Tang1**, Xin-Chun Lai2**, Xuejun Yang1,6
1State Key Laboratory of High Performance Computing, College of Computer, National University of Defense Technology, Changsha 410073
2Science and Technology on Surface Physics and Chemistry Laboratory, Jiangyou 621908
3National Innovation Institute of Defense Technology, Academy of Military Sciences PLA China, Beijing 100010
4Institute of Materials, China Academy of Engineering Physics, Mianyang 621700
5College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073
6Academy of Military Sciences PLA China, Beijing 100010
7Beijing Academy of Quantum Information Sciences, Beijing 100084
Cite this article:   
Tong Zhou, Xie-Gang Zhu, Mingyu Tong et al  2019 Chin. Phys. Lett. 36 117303
Download: PDF(3386KB)   PDF(mobile)(3547KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Nodal line semimetal (NLS) is a new quantum state hosting one-dimensional closed loops formed by the crossing of two bands. The so-called type-II NLS means that these two crossing bands have the same sign in their slopes along the radial direction of the loop, which requires that the crossing bands are either right-tilted or left-tilted at the same time. According to the theoretical prediction, Mg$_{3}$Bi$_{2}$ is an ideal candidate for studying the type-II NLS by tuning its spin-orbit coupling (SOC). High-quality Mg$_{3}$Bi$_{2}$ films are grown by molecular beam epitaxy (MBE). By in-situ angle resolved photoemission spectroscopy (ARPES), a pair of surface resonance bands around the $\bar{{{\it \Gamma}}}$ point are clearly seen. This shows that Mg$_{3}$Bi$_{2}$ films grown by MBE are Mg(1)-terminated by comparing the ARPES spectra with the first principles calculations results. Moreover, the temperature dependent weak anti-localization effect in Mg$_{3}$Bi$_{2}$ films is observed under magneto-transport measurements, which shows clear two-dimensional (2D) $e$–$e$ scattering characteristics by fitting with the Hikami–Larkin–Nagaoka model. Therefore, by combining with ARPES, magneto-transport measurements and the first principles calculations, this work proves that Mg$_{3}$Bi$_{2}$ is a semimetal with topological surface states. This paves the way for Mg$_{3}$Bi$_{2}$ to be used as an ideal material platform to study the exotic features of type-II nodal line semimetals and the topological phase transition by tuning its SOC.
Received: 14 August 2019      Published: 21 October 2019
PACS:  73.20.At (Surface states, band structure, electron density of states)  
  73.20.Fz (Weak or Anderson localization)  
  79.60.Bm (Clean metal, semiconductor, and insulator surfaces)  
  81.10.Aj (Theory and models of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)  
Fund: Supported by the Science Challenge Project under Grant No TZ2016004, the Opening Foundation of State Key Laboratory of High Performance Computing under Grant No 201601-02, the Foundation of President of CAEP under Grant No 201501040, the Natural Science Foundation of Hunan Province under Grant No 2016JJ1021, the National Basic Research Program of China under Grant Nos 2015CB921303 and 2012YQ13012508, the General Program of Beijing Academy of Quantum Information Sciences under Grant No Y18G17, and the Youth Talent Lifting Project under Grant No 17-JCJQ-QT-004.
URL:       OR
E-mail this article
E-mail Alert
Articles by authors
Tong Zhou
Xie-Gang Zhu
Mingyu Tong
Yun Zhang
Xue-Bing Luo
Xiangnan Xie
Wei Feng
Qiuyun Chen
Shiyong Tan
Zhen-Yu Wang
Tian Jiang
Yuhua Tang
Xin-Chun Lai
Xuejun Yang
[1]Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[2]Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[3]Ando Y and Fu L 2015 Annu. Rev. Condens. Matter Phys. 6 361
[4]Fu L, Kane C L and Mele E J 2007 Phys. Rev. Lett. 98 106803
[5]Armitage N P, Mele E J and Vishwanath A 2018 Rev. Mod. Phys. 90 015001
[6]Wen J, Guo H, Yan C H, Wang Z Y, Chang K, Deng P, Zhang T, Zhang Z D, Ji S H, Wang L L, He K, Ma X C, Chen X and Xue Q K 2015 Appl. Surf. Sci. 327 213
[7]Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
[8]Seo J, Roushan P, Beidenkopf H, Hor Y S, Cava R J and Yazdani A 2010 Nature 466 343
[9]Yao G, Luo Z, Pan F, Xu W, Feng Y P and Wang X 2013 Sci. Rep. 3 2010
[10]Zhu X G, Stensgaard M, Barreto L, Silva W S E, Søren U, Michiardi M, Bianchi M, Dendzik M and Hofmann P 2013 New J. Phys. 15 103011
[11]Gopal R K, Singh S, Chandra R and Mitra C 2015 AIP Adv. 5 047111
[12]Zheng G, Lu J, Zhu X, Ning W, Han Y, Zhang H, Zhang J, Xi C, Yang J, Du H, Yang K, Zhang Y and Tian M 2016 Phys. Rev. B 93 115414
[13]Li S, Yu Z M, Liu Y, Guan S, Wang S S, Zhang X, Yao Y and Yang S A 2017 Phys. Rev. B 96 081106
[14]Zhang X, Jin L, Dai X and Liu G 2017 J. Phys. Chem. Lett. 8 4814
[15]Chang T R, Pletikosic I, Kong T, Bian G, Huang A, Denlinger J, Kushwaha S K, Sinkovic B, Jeng H T, Valla T, Xie W and Cava R J 2019 Adv. Sci. 6 1800897
[16]Tamaki H, Sato H K and Kanno T 2016 Adv. Mater. 28 10182
[17]Xin J, Li G, Auffermann G, Borrmann H, Schnelle W, Gooth J, Zhao X, Zhu T, Felser C and Fu C 2018 Mater. Today Phys. 7 61
[18]Chang C Z, Zhang J, Feng X, Shen J, Zhang Z, Guo M, Li K, Ou Y, Wei P, Wang L L, Ji Z Q, Feng Y, Ji S, Chen X, Jia J, Dai X, Fang Z, Zhang S C, He K, Wang Y, Lu L, Ma X C and Xue Q K 2013 Science 340 167
[19]He X and Li J B 2019 Chin. Phys. B 28 037301
[20]Song L L, Zhang L Z, Guan Y R, Lu J C, Yan C X and Cai J M 2019 Chin. Phys. B 28 037101
[21]Yu H L, Zhai Z Y and Bian X T 2016 Chin. Phys. Lett. 33 117305
[22]Marzari N and Vanderbilt D 1997 Phys. Rev. B 56 12847
[23]Souza I, Marzari N and Vanderbilt D 2001 Phys. Rev. B 65 035109
[24]Mostofi A A, Yates J R, Lee Y S, Souza I, Vanderbilt D and Marzari N 2008 Comput. Phys. Commun. 178 685
[25]Wu Q S, Zhang S N, Song H F, Troyer M and Soluyanov A A 2018 Comput. Phys. Commun. 224 405
[26]Narayan A, Rungger I and Sanvito S 2012 Phys. Rev. B 86 201402
[27]Gorai P, Toberer E S and Stevanovic V 2019 J. Appl. Phys. 125 025105
[28]Hikami S, Larkin A I and Nagaoka Y 1980 Prog. Theor. Phys. 63 707
[29]Bao L, He L, Meyer N, Kou X, Zhang P, Chen Z G, Fedorov A V, Zou J, Riedemann T M, Lograsso T A, Wang K L, Tuttle G and Xiu F 2012 Sci. Rep. 2 726
[30]Dybko K, Mazur G P, Wolkanowicz W W, Szot M, Dziawa P, Domagala J Z, Wiater M, Wojtowicz T, Grabecki G and Story T 2018 arXiv:1812.08711
[31]Liu M, Chang C Z, Zhang Z, Zhang Y, Ruan W, He K, Wang L L, Chen X, Jia J F, Zhang S C, Xue Q K, Ma X and Wang Y 2011 Phys. Rev. B 83 165440
[32]Spirito D, Di Gaspare L, Evangelisti F, Di Gaspare A, Giovine E and Notargiacomo A 2012 Phys. Rev. B 85 235314
[33]Liao J, Ou Y, Feng X, Yang S, Lin C, Yang W, Wu K, He K, Ma X, Xue Q K and Li Y 2015 Phys. Rev. Lett. 114 216601
Related articles from Frontiers Journals
[1] Dandan Guan, Xinwei Wang, Hongying Mao, Shining Bao, Jin-Feng Jia. Adsorption of Perylene on Si(111)($7 \times 7$)[J]. Chin. Phys. Lett., 2020, 37(2): 117303
[2] Yan Gong, Jingwen Guo, Jiaheng Li, Kejing Zhu, Menghan Liao, Xiaozhi Liu, Qinghua Zhang, Lin Gu, Lin Tang, Xiao Feng, Ding Zhang, Wei Li, Canli Song, Lili Wang, Pu Yu, Xi Chen, Yayu Wang, Hong Yao, Wenhui Duan, Yong Xu, Shou-Cheng Zhang, Xucun Ma, Qi-Kun Xue, Ke He. Experimental Realization of an Intrinsic Magnetic Topological Insulator[J]. Chin. Phys. Lett., 2019, 36(7): 117303
[3] Shou-juan Zhang, Wei-xiao Ji, Chang-wen Zhang, Shu-feng Zhang, Ping Li, Sheng-shi Li, Shi-shen Yan. Discovery of Two-Dimensional Quantum Spin Hall Effect in Triangular Transition-Metal Carbides[J]. Chin. Phys. Lett., 2018, 35(8): 117303
[4] Gaoyuan Jiang, Yang Feng, Weixiong Wu, Shaorui Li, Yunhe Bai, Yaoxin Li, Qinghua Zhang, Lin Gu, Xiao Feng, Ding Zhang, Canli Song, Lili Wang, Wei Li, Xu-Cun Ma, Qi-Kun Xue, Yayu Wang, Ke He. Quantum Anomalous Hall Multilayers Grown by Molecular Beam Epitaxy[J]. Chin. Phys. Lett., 2018, 35(7): 117303
[5] Sailong Ju, Maokun Wu, Hao Yang, Naizhou Wang, Yingying Zhang, Peng Wu, Pengdong Wang, Bo Zhang, Kejun Mu, Yaoyi Li, Dandan Guan, Dong Qian, Feng Lu, Dayong Liu, Wei-Hua Wang, Xianhui Chen, Zhe Sun. Band Structures of Ultrathin Bi(110) Films on Black Phosphorus Substrates Using Angle-Resolved Photoemission Spectroscopy[J]. Chin. Phys. Lett., 2018, 35(7): 117303
[6] Bin-Xu, Jing-Ping Xu, Lu Liu, Yong Su. Improvements of Interfacial and Electrical Properties for Ge MOS Capacitor with LaTaON Gate Dielectric by Optimizing Ta Content[J]. Chin. Phys. Lett., 2018, 35(7): 117303
[7] Hui-Xiong Deng, Zhi-Gang Song, Shu-Shen Li, Su-Huai Wei, Jun-Wei Luo. Atomic-Ordering-Induced Quantum Phase Transition between Topological Crystalline Insulator and $Z_{2}$ Topological Insulator[J]. Chin. Phys. Lett., 2018, 35(5): 117303
[8] Chong Liu, Haohao Yang, Can-Li Song, Wei Li, Ke He, Xu-Cun Ma, Lili Wang, Qi-Kun Xue. Observation of Tunneling Gap in Epitaxial Ultrathin Films of Pyrite-Type Copper Disulfide[J]. Chin. Phys. Lett., 2018, 35(2): 117303
[9] Zhi-Fu Zhu, He-Qiu Zhang, Hong-Wei Liang, Xin-Cun Peng, Ji-Jun Zou, Bin Tang, Guo-Tong Du. Characterization of Interface State Density of Ni/p-GaN Structures by Capacitance/Conductance-Voltage-Frequency Measurements[J]. Chin. Phys. Lett., 2017, 34(9): 117303
[10] Kun Zhao, Hai-Cheng Lin, Wan-Tong Huang, Xiao-Peng Hu, Xi Chen, Qi-Kun Xue, Shuai-Hua Ji. Molecular Beam Epitaxy Growth of Tetragonal FeS Films on SrTiO$_{3}$(001) Substrates[J]. Chin. Phys. Lett., 2017, 34(8): 117303
[11] Jing Shi, Yong Gao, Xiao-Li Wang, Si-Ning Yun. Electronic, Elastic and Piezoelectric Properties of Two-Dimensional Group-IV Buckled Monolayers[J]. Chin. Phys. Lett., 2017, 34(8): 117303
[12] Jian-Peng Sun. Topological Nodal Line Semimetal in Non-Centrosymmetric PbTaS$_2$[J]. Chin. Phys. Lett., 2017, 34(7): 117303
[13] Jin-Lian Lu, Wei Luo, Xue-Yang Li, Sheng-Qi Yang, Jue-Xian Cao, Xin-Gao Gong, Hong-Jun Xiang. Two-Dimensional Node-Line Semimetals in a Honeycomb-Kagome Lattice[J]. Chin. Phys. Lett., 2017, 34(5): 117303
[14] Shi-Li Yan, Zhi-Jian Xie, Jian-Hao Chen, Takashi Taniguchi, Kenji Watanabe. Electrically Tunable Energy Bandgap in Dual-Gated Ultra-Thin Black Phosphorus Field Effect Transistors[J]. Chin. Phys. Lett., 2017, 34(4): 117303
[15] Yu-Feng An, Zhen-Hong Dai, Yin-Chang Zhao, Chao Lian, Zhao-Qing Liu. Band Gap Adjustment of SiC Honeycomb Structure through Hydrogenation and Fluorination[J]. Chin. Phys. Lett., 2017, 34(1): 117303
Full text