Chin. Phys. Lett.  2019, Vol. 36 Issue (11): 116801    DOI: 10.1088/0256-307X/36/11/116801
Observation of Simplest Water Chains on Surface Stabilized by a Hydroxyl Group at One End
An-Ning Dong1,2,5, Li-Huan Sun1,2, Xiang-Qian Tang1,2, Yi-Kun Yao1,2, Yang An1,2, Dong Hao1,2, Xin-Yan Shan1**, Xing-Hua Lu1,2,3,4**
1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190
2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190
3Collaborative Innovation Center of Quantum Matter, Beijing 100190
4Songshan Lake Materials Laboratory, Dongguan 523808
5Engineering Technology Department, Zolix Instruments Co. Ltd, Beijing 101102
Cite this article:   
An-Ning Dong, Li-Huan Sun, Xiang-Qian Tang et al  2019 Chin. Phys. Lett. 36 116801
Download: PDF(1547KB)   PDF(mobile)(1904KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The key to fully understanding water-solid interfaces relies on the microscopic nature of hydrogen bond networks, including their atomic structures, interfacial interactions, and dynamic behaviors. Here, we report the observation of two types of simplest water chains on Au(111) surface which is expected unstable according to the rules of hydrogen network on noble metal surfaces. A common feature at the end of chain structures is revealed in high resolution scanning tunneling microscopy images. To explain the stability in observed hydrogen bond networks, we propose a structure model of the water chains terminated with a hydroxyl group. The model is consistent with detailed image analysis and molecular manipulation. The observation of simplest water chains suggests a new platform for exploring fundamental physics in hydrogen bond networks on surfaces.
Received: 09 July 2019      Published: 21 October 2019
PACS:  68.37.Ef (Scanning tunneling microscopy (including chemistry induced with STM))  
  68.43.Fg (Adsorbate structure (binding sites, geometry))  
  82.65.+r (Surface and interface chemistry; heterogeneous catalysis at surfaces)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11774395 and 91753136, the Beijing Natural Science Foundation under Grant No 4181003, the Strategic Priority Research Program (B) of the Chinese Academy of Sciences under Grant Nos XDB30201000 and XDB28000000.
URL:       OR
E-mail this article
E-mail Alert
Articles by authors
An-Ning Dong
Li-Huan Sun
Xiang-Qian Tang
Yi-Kun Yao
Yang An
Dong Hao
Xin-Yan Shan
Xing-Hua Lu
[1]Henderson M A 2002 Surf. Sci. Rep. 46 1
[2]Hodgson A and Haq S 2009 Surf. Sci. Rep. 64 381
[3]Björneholm O et al 2016 Chem. Rev. 116 7698
[4]Mitsui T, Rose M, Fomin E, Ogletree D F and Salmeron M 2002 Science 297 1850
[5]Michaelides A and Morgenstern K 2007 Nat. Mater. 6 597
[6]Motobayashi K, Matsumoto C, Kim Y and Kawai M 2008 Surf. Sci. 602 3136
[7]Ranea V A et al 2004 Phys. Rev. Lett. 92 136104
[8]Kumagai T et al 2011 J. Chem. Phys. 134 024703
[9]Guo J et al 2014 Nat. Mater. 13 184
[10]Guo Y, Ding Z, Sun L, Li J, Meng S and Lu X 2016 ACS Nano 10 4489
[11]Liriano M L et al 2017 J. Am. Chem. Soc. 139 6403
[12]Dong A, Yan L, Sun L, Yan S, Shan X, Guo Y, Meng S and Lu X 2018 ACS Nano 12 6452
[13]Yamada T, Tamamori S, Okuyama H and Aruga T 2006 Phys. Rev. Lett. 96 036105
[14]Carrasco J et al 2009 Nat. Mater. 8 427
[15]Shiotari A and Sugimoto Y 2017 Nat. Commun. 8 14313
[16]Cerdá J et al 2004 Phys. Rev. Lett. 93 116101
[17]Nie S, Feibelman P J, Bartelt N C and Thürmer K 2010 Phys. Rev. Lett. 105 026102
[18]Thürmer K and Bartelt N C 2008 Phys. Rev. Lett. 100 186101
[19]Forster M, Raval R, Hodgson A, Carrasco J and Michaelides A 2011 Phys. Rev. Lett. 106 046103
[20]Salmeron M et al 2009 Faraday Discuss. 141 221
[21]Meng S, Wang E G and Gao S 2004 Phys. Rev. B 69 195404
[22]Stowell M H B et al 1997 Science 276 812
[23]Morgenstern M, Michely T and Comsa G 1996 Phys. Rev. Lett. 77 703
[24]Kumagai T et al 2009 Phys. Rev. B 79 035423
[25]Kumagai T et al 2012 Nat. Mater. 11 167
[26]Merte L R et al 2012 Science 336 889
[27]Meng X et al 2015 Nat. Phys. 11 235
[28]Peköz R and Donadio D 2017 J. Phys. Chem. C 121 16783
[29]Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[30]Klimeš J, Bowler D R and Michaelides A 2011 Phys. Rev. B 83 195131
[31]Discussion with Professor Sheng Meng at Institute of Physics, CAS (unpublished results)
Related articles from Frontiers Journals
[1] Rui-Zhe Liu, Xiong Huang, Ling-Xiao Zhao, Li-Min Liu, Jia-Xin Yin, Rui Wu, Gen-Fu Chen, Zi-Qiang Wang, Shuheng H. Pan. Experimental Observations Indicating the Topological Nature of the Edge States on HfTe$_{5}$[J]. Chin. Phys. Lett., 2019, 36(11): 116801
[2] Qing Han, Qun Cai. Suppressing Effects of Ag Wetting Layer on Surface Conduction of Er Silicide/Si(001) Nanocontacts[J]. Chin. Phys. Lett., 2018, 35(8): 116801
[3] Lu Dong, Guan-Yong Wang, Zhen Zhu, Chen-Xiao Zhao, Xin-Yi Yang, Ai-Min Li, Jing-Lei Chen, Dan-Dan Guan, Yao-Yi Li, Hao Zheng, Mao-Hai Xie, Jin-Feng Jia. Charge Density Wave States in 2H-MoTe$_{2}$ Revealed by Scanning Tunneling Microscopy[J]. Chin. Phys. Lett., 2018, 35(6): 116801
[4] Ai-Min Li, Lu-Dong, Xin-Yi Yang, Zhen Zhu, Guan-Yong Wang, Dan-Dan Guan, Hao Zheng, Yao-Yi Li, Canhua Liu, Dong Qian, Jin-Feng Jia. Metastable Face-Centered Cubic Structure and Structural Transition of Sn on 2H-NbSe$_{2}$ (0001)[J]. Chin. Phys. Lett., 2018, 35(6): 116801
[5] Xin-Yi Yang, Guan-Yong Wang, Chen-Xiao Zhao, Zhen Zhu, Lu Dong, Ai-Min Li, Yang-Yang Lv, Shu-Hua Yao, Yan-Bin Chen, Dan-Dan Guan, Yao-Yi Li, Hao Zheng, Dong Qian, Canhua Liu, Yu-Lin Chen, Jin-Feng Jia. Surface Structure and Reconstructions of HgTe (111) Surfaces[J]. Chin. Phys. Lett., 2018, 35(2): 116801
[6] Chong Liu, Haohao Yang, Can-Li Song, Wei Li, Ke He, Xu-Cun Ma, Lili Wang, Qi-Kun Xue. Observation of Tunneling Gap in Epitaxial Ultrathin Films of Pyrite-Type Copper Disulfide[J]. Chin. Phys. Lett., 2018, 35(2): 116801
[7] Zhi-Qing Han, Xun Shi, Xi-Liang Peng, Yu-Jie Sun, Shan-Cai Wang. High-Quality FeTe$_{1-x}$Se$_{x}$ Monolayer Films on SrTiO$_{3}$(001) Substrates Grown by Molecular Beam Epitaxy[J]. Chin. Phys. Lett., 2017, 34(10): 116801
[8] Kun Zhao, Hai-Cheng Lin, Wan-Tong Huang, Xiao-Peng Hu, Xi Chen, Qi-Kun Xue, Shuai-Hua Ji. Molecular Beam Epitaxy Growth of Tetragonal FeS Films on SrTiO$_{3}$(001) Substrates[J]. Chin. Phys. Lett., 2017, 34(8): 116801
[9] PENG Jun-Ping, ZHANG Hui-Min, SONG Can-Li, JIANG Ye-Ping, WANG Li-Li, HE Ke, XUE Qi-Kun, MA Xu-Cun. Molecular Beam Epitaxy Growth and Scanning Tunneling Microscopy Study of Pyrite CuSe2 Films on SrTiO3[J]. Chin. Phys. Lett., 2015, 32(06): 116801
[10] HE Jie-Hui, JIANG Li-Qun, QIU Jing-Lan, CHEN Lan, WU Ke-Hui. Growth of Atomically Flat Ultra-Thin Ag Films on Si(111) by Introducing a √3×√3-Ga Buffer Layer[J]. Chin. Phys. Lett., 2014, 31(12): 116801
[11] WEN Jing, GUO Hua, YAN Chen-Hui, WANG Zhen-Yu, CHANG Kai, DENG Peng, ZHANG Teng, ZHANG Zhi-Dong, JI Shuai-Hua, WANG Li-Li, HE Ke, MA Xu-Cun, CHEN Xi, XUE Qi-Kun. Semimetal Na3Bi Thin Film Grown on Double-Layer Graphene by Molecular Beam Epitaxy[J]. Chin. Phys. Lett., 2014, 31(11): 116801
[12] YUAN Bing-Kai, CHEN Peng-Cheng, ZHANG Jun, DENG Ke, CHENG Zhi-Hai, WANG Chen. Topography Multiplicity of Titanyl Phthalocyanine on Ultrathin Insulating Films Observed by STM[J]. Chin. Phys. Lett., 2013, 30(10): 116801
[13] LIU Bei-Bei, CAI Qun. Simultaneous Formation of AlB2-Type and ThSi2-Type Nanoislands of Er Silicide by Using a Prepatterned Si(001) Substrate[J]. Chin. Phys. Lett., 2013, 30(9): 116801
[14] XIE Nan, GONG Hui-Qi, ZHOU Zhi, GUO Xiao-Dong, YAN Shi-Chao, SUN Qian, XING Sirui, WU Wei, PEI Shin-shem, BAO Jiming, SHAN Xin-Yan, GUO Yang, LU Xing-Hua . Visualization of a Maze-Like Reconstruction of Graphene on a Copper Surface at the Atomic Scale[J]. Chin. Phys. Lett., 2013, 30(5): 116801
[15] WANG Shu-Hua, CAI Qun** . Anisotropic Diffusion Evolution of Vacancies Created by Oxygen Etching on a Si Surface[J]. Chin. Phys. Lett., 2011, 28(7): 116801
Full text