Chin. Phys. Lett.  2019, Vol. 36 Issue (11): 116101    DOI: 10.1088/0256-307X/36/11/116101
Comparative Study of Substitutional N and Substitutional P in Diamond
Hong-Yu Yu1,2, Nan Gao1**, Hong-Dong Li1, Xu-Ri Huang2, Tian Cui1
1State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012
2Institute of Theoretical Chemistry, Jilin University, Changchun 130012
Cite this article:   
Hong-Yu Yu, Nan Gao, Hong-Dong Li et al  2019 Chin. Phys. Lett. 36 116101
Download: PDF(2560KB)   PDF(mobile)(2549KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Based on density functional theory calculations, it is found that for substitutional N in diamond the $C_{3v}$ symmetry structure is more stable, while $C_{3v}$ and $D_{2d}$ symmetry patterns for the substitutional P in diamond have comparable energies. Moreover, the substitutional N is a deep donor for diamond, while P is a shallow substitutional n-type dopant. This is attributed to the different doping positions of dopant (the N atom is seriously deviated from the substitutional position, while the P atom nearly locates in the substitutional site), which are determined by the atomic radius.
Received: 14 June 2019      Published: 21 October 2019
PACS:  61.72.-y (Defects and impurities in crystals; microstructure)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11704143, 11604023, 51672102, 51972135, 51632002, 51572108, 91745203 and 11634004, and the Program for Changjiang Scholars and Innovative Research Team in University under Grant No IRT_15R23.
URL:       OR
E-mail this article
E-mail Alert
Articles by authors
Hong-Yu Yu
Nan Gao
Hong-Dong Li
Xu-Ri Huang
Tian Cui
[1]Singh J 1993 Physics of Semiconductors and Their Heterostructures (New York: McGraw-Hill)
[2]Crowther P A, Dean P J and Sherman W F 1967 Phys. Rev. 154 772
[3]Goss J P and Briddon P R 2007 Phys. Rev. B 75 075202
[4]Khmelnitsky R, Saraykin V, Dravin V, Zavedeyev E, Makarov S, Bronsky V and Gippius A 2016 Surf. Coat. Technol. 307 236
[5]Yan C, Dai Y, Huang B, Long R and Guo M 2009 Comput. Mater. Sci. 44 1286
[6]Smith W V, Sorokin P P, Gelles I L and Lasher G J 1959 Phys. Rev. 115 1546
[7]Kajihara S A, Antonelli A, Bernholc J and Car R 1991 Phys. Rev. Lett. 66 2010
[8]Joseph P, Tai N, Lee C Y, Niu H, Pong W and Lin I 2008 J. Appl. Phys. 103 043720
[9]Ivanova T A and Mavrin B N 2014 Crystallogr. Rep. 59 93
[10]Czelej K, Śpiewak P and Kurzydłowski K J 2016 MRS Adv. 1 1093
[11]Isoya J, Katagiri M, Umeda T, Koizumi S, Kanda H, Son N T, Henry A, Gali A and Janzén E 2006 Physica B 376 358
[12]Alfieri G, Kranz L and Mihaila A 2018 Phys. Status Solidi RRL 12 1700409
[13]Hunn J D, Parikh N R, Swanson M L and Zuhr R A 1993 Diamond Relat. Mater. 2 847
[14]Farrer R G 1969 Solid State Commun. 7 685
[15]Hu X J, Ye J S, Liu H J, Shen Y G, Chen X H and Hu H 2011 J. Appl. Phys. 109 053524
[16]Sakaguchi I, Gamo M N, Kikuchi Y, Yasu E, Haneda H, Suzuki T and Ando T 1999 Phys. Rev. B 60 R2139
[17]Sque S J, Jones R, Goss J P and Briddon P R 2004 Phys. Rev. Lett. 92 017402
[18]Yan C X, Dai Y and Huang B B 2009 J. Phys. D 42 145407
[19]Bhattacharyya S 2004 Phys. Rev. B 70 125412
[20]Atumi M K, Goss J P, Briddon P R and Rayson M J 2013 Phys. Rev. B 88 245301
[21]Lombardi E B, Mainwood A, Osuch K and Reynhardt E C 2003 J. Phys.: Condens. Matter 15 3135
[22]Gheeraert E, Koizumi S, Teraji T and Kanda H 2000 Solid State Commun. 113 577
[23]Butorac B and Mainwood A 2008 Phys. Rev. B 78 235204
[24]Yamamoto T, Janssens S D, Ohtani R, Takeuchi D and Koizumi S 2016 Appl. Phys. Lett. 109 182102
[25]Kato H, Yamasaki S and Okushi H 2005 Appl. Phys. Lett. 86 222111
[26]Koizumi S, Watanabe K, Hasegawa M and Kanda H 2001 Science 292 1899
[27]Blöchl P E 1994 Phys. Rev. B 50 17953
[28]Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[29]Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[30]Hernández E 2001 J. Chem. Phys. 115 10282
[31]Eyre R J, Goss J P, Briddon P R and Wardle M G 2007 Phys. Status Solidi A 204 2971
[32]Deák P, Aradi B, Gali A and Frauenheim T 2011 Phys. Status Solidi B 248 790
[33]Lombardi E B and Mainwood A 2008 Diamond Relat. Mater. 17 1349
[34]Tang L, Yue R and Wang Y 2018 Carbon 130 458
[35]Yu H Y, Gao N, Li H D, Huang X R, Duan D F, Bao K, Zhu M F, Liu B B and Cui T 2019 Chin. Phys. B 28 088102
[36]Deák P, Aradi B, Kaviani M, Frauenheim T and Gali A 2014 Phys. Rev. B 89 075203
[37]Li X Q, Zhao Y F, Tang Y N and Yang W J 2018 Acta Phys. Sin. 67 070302 (in Chinese)
[38]Stoneham A M, Harker A H and Morley G W 2009 J. Phys.: Condens. Matter 21 1364222
[39]Orita N, Nishimatsu T and Katayama-Yoshida H 2007 Jpn. J. Appl. Phys. 46 315
[40]Segev D and Wei S H 2003 Phys. Rev. Lett. 91 126406
[41]Heyd J, Scuseria G E and Ernzerhof M 2003 J. Chem. Phys. 118 8207
Related articles from Frontiers Journals
[1] Xiao-Yu Zhao, Jun-Hui Huang, Zhi-Yao Zhuo, Yong-Zhou Xue, Kun Ding, Xiu-Ming Dou, Jian Liu, Bao-Quan Sun. Optical Properties of Atomic Defects in Hexagonal Boron Nitride Flakes under High Pressure[J]. Chin. Phys. Lett., 2020, 37(4): 116101
[2] Yan-Bin Sheng, Hong-Peng Zhang, Tie-Long Shen, Kong-Fang Wei, Long Kang, Rui Liu, Tong-Min Zhang, Bing-Sheng Li. Atomic Mixing Induced by Ion Irradiation of V/Cu Multilayers[J]. Chin. Phys. Lett., 2020, 37(3): 116101
[3] Yi Wang, Wensheng Lai, Jiahao Li. An Incremental Model for Defect Production upon Cascade Overlapping[J]. Chin. Phys. Lett., 2020, 37(1): 116101
[4] Baoan Liu, Suye Yu, Xiangcao Li, Xin Ju. Electronic Structure and Optical Property Calculation of an Oxygen Vacancy in NH$_{4}$H$_{2}$PO$_{4}$ Crystals[J]. Chin. Phys. Lett., 2019, 36(3): 116101
[5] Li Guan, Guang-Ming Shen, Hao-Tian Ma, Guo-Qi Jia, Feng-Xue Tan, Ya-Nan Liang, Zhi-Ren Wei. Different Thermal Stabilities of Cation Point Defects in LaAlO$_{3}$ Bulk and Films[J]. Chin. Phys. Lett., 2018, 35(9): 116101
[6] Ying-Xi Niu, Xiao-Yan Tang, Ren-Xu Jia, Ling Sang, Ji-Chao Hu, Fei Yang, Jun-Min Wu, Yan Pan, Yu-Ming Zhang. Influence of Triangle Structure Defect on the Carrier Lifetime of the 4H-SiC Ultra-Thick Epilayer[J]. Chin. Phys. Lett., 2018, 35(7): 116101
[7] Shen Li, Cui-Hong Li, Bo-Wen Zhao, Yang Dong, Cong-Cong Li, Xiang-Dong Chen, Ya-Song Ge, Fang-Wen Sun. A Bright Single-Photon Source from Nitrogen-Vacancy Centers in Diamond Nanowires[J]. Chin. Phys. Lett., 2017, 34(9): 116101
[8] Xiao-Meng Zhao, Yang Zhang, Li-Jie Cui, Min Guan, Bao-Qiang Wang, Zhan-Ping Zhu, Yi-Ping Zeng. Growth and Characterization of InSb Thin Films on GaAs (001) without Any Buffer Layers by MBE[J]. Chin. Phys. Lett., 2017, 34(7): 116101
[9] Yan-Xia Ye, Xiu-Ming Dou, Kun Ding, Fu-Hua Yang, De-Sheng Jiang, Bao-Quan Sun. Fluorescence Intermittency in Monolayer WSe$_{2}$[J]. Chin. Phys. Lett., 2017, 34(7): 116101
[10] Li Guan, Feng-Xue Tan, Guo-Qi Jia, Guang-Ming Shen, Bao-Ting Liu, Xu Li. Contribution of Surface Defects to the Interface Conductivity of SrTiO$_{3}$/LaAlO$_{3}$[J]. Chin. Phys. Lett., 2016, 33(08): 116101
[11] Zhao-Jun Gong, Xiang-Dong Chen, Cong-Cong Li, Shen Li, Bo-Wen Zhao, Fang-Wen Sun. Generation of Nitrogen-Vacancy Center Pairs in Bulk Diamond by Molecular Nitrogen Implantation[J]. Chin. Phys. Lett., 2016, 33(02): 116101
[12] Hai-Kuan Dong, Li-Bin Shi. Impact of Native Defects in the High Dielectric Constant Oxide HfSiO$_{4}$ on MOS Device Performance[J]. Chin. Phys. Lett., 2016, 33(01): 116101
[13] WANG Yu-Peng, WANG Yong-Ping, SHI Li-Bin. Impact of Arsenic Related Defects on Electronic Performance of ZrO2/GaAs: Density Functional Theory Calculations[J]. Chin. Phys. Lett., 2015, 32(01): 116101
[14] CHANG Yong-Qin, SUN Qing-Ling, LONG Yi, WANG Ming-Wen. Effect of Crystalline Quality on Magnetic Properties of Mn-Doped ZnO Nanowires[J]. Chin. Phys. Lett., 2014, 31(12): 116101
[15] WANG Jun, DENG Can, JIA Zhi-Gang, WANG Yi-Fan, WANG Qi, HUANG Yong-Qing, REN Xiao-Min. Unintentional Doping Mechanisms in GaAs/Si Films Grown by Metalorganic Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2013, 30(11): 116101
Full text