Chin. Phys. Lett.  2019, Vol. 36 Issue (11): 113101    DOI: 10.1088/0256-307X/36/11/113101
ATOMIC AND MOLECULAR PHYSICS |
Parameters of Isotope Shifts for $2s2p{}^{3,1}\!P_{1} \to 2s^{2}{}^{1}\!S_0$ Transitions in Heavy Be-Like Ions
Xiang Zhang1, Jian-Peng Liu1, Ji-Guang Li2**, Hong-Xin Zou1**
1College of Liberal Arts and Science, National University of Defense Technology, Changsha 410073
2Institute of Applied Physics and Computational Mathematics, Beijing 100088
Cite this article:   
Xiang Zhang, Jian-Peng Liu, Ji-Guang Li et al  2019 Chin. Phys. Lett. 36 113101
Download: PDF(669KB)   PDF(mobile)(659KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The field shift and mass shift parameters of the 2$s2p\,{}^{3,1}\!P_{1}\to 2s^{2}\,{}^{1}\!S_0$ transitions in Be-like ions ($70 \le Z \le 92$) are calculated using the multi-configuration Dirac–Hartree–Fock and the relativistic configuration interaction methods with the inclusion of the Breit interaction and the leading QED corrections. We find that the mass shift parameters of these two transitions do not change monotonously along the isoelectronic sequence in the high-$Z$ range due to the relativistic nuclear recoil effects. A minimum value exists for the specific mass shift parameters around $Z=80$, especially for the 2$s2p\,{}^{3}\!P_{1}\to 2s^{2}\,{}^{1}\!S_0$ transition. In addition, the field shifts and mass shifts of these two transitions are estimated using an empirical formula, and their contributions are compared along the isoelectronic sequence.
Received: 01 July 2019      Published: 21 October 2019
PACS:  31.15.V- (Electron correlation calculations for atoms, ions and molecules)  
  31.15.am (Relativistic configuration interaction (CI) and many-body perturbation calculations)  
  31.30.J- (Relativistic and quantum electrodynamic (QED) effects in atoms, molecules, and ions)  
  31.30.Gs (Hyperfine interactions and isotope effects)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11874090, 11604385, 91536106 and 11204374, and the Research Project of National University of Defense Technology under Grant No ZK17-03-11.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/11/113101       OR      https://cpl.iphy.ac.cn/Y2019/V36/I11/113101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xiang Zhang
Jian-Peng Liu
Ji-Guang Li
Hong-Xin Zou
[1]Ulm G et al 1986 Z. Phys. A: At. Nucl. 325 247
[2]Proffitt C R et al 1999 Astrophys. J. 516 342
[3]Pálffy A 2010 Contemp. Phys. 51 471
[4]Campbell P et al 2016 Prog. Part. Nucl. Phys. 86 127
[5]Brandau C et al 2008 Phys. Rev. Lett. 100 073201
[6]Schippers S 2009 J. Phys.: Conf. Ser. 163 012001
[7]Schippers S 2012 J. Phys.: Conf. Ser. 388 012010
[8]Lundqvist M et al 2007 Astron. Astrophys. 463 693
[9]Roederer I U et al 2012 Astrophys. J. Suppl. Ser. 203 27
[10]Kasen D et al 2017 Nature 551 80
[11]Kurucz R L 1993 Phys. Scr. T47 110
[12]Cayrel R et al 2007 Astron. Astrophys. 473 L37
[13]Shabaev V M et al 1998 J. Phys. B 31 L337
[14]Artemyev A N et al 1995 Phys. Rev. A 52 1884
[15]Artemyev A N et al 1995 J. Phys. B 28 5201
[16]Shabaev V M and Artemyev A N 1994 J. Phys. B 27 1307
[17]Li J et al 2012 Phys. Rev. A 86 022518
[18]Zubova N A et al 2014 Phys. Rev. A 90 062512
[19]Zubova N A et al 2016 Phys. Rev. A 93 052502
[20]Malyshev A V et al 2014 Phys. Rev. A 90 062517
[21]Nazé C et al 2014 At. Data Nucl. Data Tables 100 1197
[22]Jönsson P et al 2013 Comput. Phys. Commun. 184 2197
[23]Ekman J et al 2019 Comput. Phys. Commun. 235 433
[24]Palmer C W P 1987 J. Phys. B 20 5987
[25]Shabaev V M 1998 Phys. Rev. A 57 59
[26]Gaidamauskas E et al 2011 J. Phys. B 44 175003
[27]Torbohm G et al 1985 Phys. Rev. A 31 2038
[28]Blundell S A et al 1987 J. Phys. B 20 3663
[29]Fischer C F et al 1997 Computational Atomic Structure: an MCHF Approach (Bristol: Institute of Physics Publishing) p 67
[30]Şchiopu R et al 2004 Eur. Phys. J. D 31 21
[31]Johnson W R and Soff G 1985 At. Data Nucl. Data Tables 33 405
[32]Andrae D 2000 Phys. Rep. 336 413
Related articles from Frontiers Journals
[1] Benquan Lu, Xiaotong Lu, Jiguang Li, and Hong Chang. Reconciliation of Theoretical Lifetimes of the $5s5p\,^3\!P^{\rm o}_2$ Metastable State for $^{88}$Sr with Measurement: The Role of the Blackbody-Radiation-Induced Decay[J]. Chin. Phys. Lett., 2022, 39(7): 113101
[2] Qing Liu, Jiguang Li, Jianguo Wang, and Yizhi Qu. Effect of Electron Correlation and Breit Interaction on Energies, Oscillator Strengths, and Transition Rates for Low-Lying States of Helium[J]. Chin. Phys. Lett., 2021, 38(11): 113101
[3] Nagat Elkahwagy, Atif Ismail, S. M. A. Maize, K. R. Mahmoud. Theoretical Investigation on the Low-Lying States of LaP Molecule[J]. Chin. Phys. Lett., 2018, 35(10): 113101
[4] WAN Jian-Jie. Shannon Entropy as a Measurement of the Information in a Multiconfiguration Dirac–Fock Wavefunction[J]. Chin. Phys. Lett., 2015, 32(02): 113101
[5] DING Xiao-Bin, DONG Chen-Zhong, Gerard O'Sullivan. Shake-up Processes in the 3d Photoionization of Sr I and the Subsequent Auger Decay[J]. Chin. Phys. Lett., 2012, 29(6): 113101
Viewed
Full text


Abstract