Chin. Phys. Lett.  2019, Vol. 36 Issue (9): 097701    DOI: 10.1088/0256-307X/36/9/097701
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Modelling Debye Dielectric Relaxation in Monohydroxy Alcohols
Li-Na Wang1,2, Xing-Yu Zhao1,2, Yi-Neng Huang1,2**
1National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093
2Xinjiang Laboratory of Phase Transitions and Microstructures in Condensed Matters, College of Physical Science and Technology, Yili Normal University, Yining 835000
Cite this article:   
Li-Na Wang, Xing-Yu Zhao, Yi-Neng Huang 2019 Chin. Phys. Lett. 36 097701
Download: PDF(645KB)   PDF(mobile)(633KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The Debye relaxation of dielectric spectroscopy exists extensively in monohydroxy alcohols. We model the relaxation based on the infinite-pseudospin-chain Ising model and the Glauber dynamics, and the corresponding complex permittivity is obtained. The model results are in good agreement with the experimental data of 3,7-dimethyl-1-octanol, 2-ethyl-1-hexanol and 5-methyl-2-hexanol in a wide temperature range. Moreover, in the model parameters, the sum of the mean-field interaction energy and two times the orientation is nearly twice the hydrogen bond energy, which further states the rationality of this model.
Received: 25 June 2019      Published: 23 August 2019
PACS:  77.22.Ch (Permittivity (dielectric function))  
  82.30.Rs (Hydrogen bonding, hydrophilic effects)  
  61.20.Gy (Theory and models of liquid structure)  
Fund: Supported by the National Natural Science Foundation of China under Grant No 11664042.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/9/097701       OR      https://cpl.iphy.ac.cn/Y2019/V36/I9/097701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Li-Na Wang
Xing-Yu Zhao
Yi-Neng Huang
[1]Böhmer R, Gainaru C and Richert R 2014 Phys. Rep. 545 125
[2]Gainaru C, Meier R, Schildmann S, Lederle C, Hiller W, Rössler E A and Böhmer R 2010 Phys. Rev. Lett. 105 258303
[3]Bauer T, Michl M, Lunkenheimer P and Loidl A 2015 J. Non-Cryst. Solids 407 66
[4]Gao Y, Chen Z, Tu W, Li X, Tian Y, Liu R and Wang L 2015 J. Chem. Phys. 142 214505
[5]Gainaru C, Kastner S, Mayr F, Lunkenheimer P, Schildmann S, Weber H J, Hiller W, Loidl A and Böhmer R 2011 Phys. Rev. Lett. 107 118304
[6]Bauer S, Burlafinger K, Gainaru C, Lunkenheimer P, Hiller W, Loidl A and Böhmer R 2013 J. Chem. Phys. 138 94505
[7]Bauer S, Moch K, Münzner P, Schildmann S, Gainaru C and Böhmer R 2015 J. Non-Cryst. Solids 407 384
[8]Li X, Chen Z M, Li Z J, Gao Y Q, Tu W K, Li X Q, Zhang Y Q, Liu Y D and Wang L M 2014 J. Chem. Phys. 141 104506
[9]Huth H, Wang L M, Schick C and Richert R 2007 J. Chem. Phys. 126 104503
[10]Debye P 1929 Polar Molecules (New York: Chemical Catalog Company) Chap II p 27
[11]Onsager L 1936 J. Am. Chem. Soc. 58 1486
[12]Oster G and Kirkwood J G 1943 J. Chem. Phys. 11 175
[13]Kirkwood J G 1939 J. Chem. Phys. 7 911
[14]Stockmaye W H and Baur M E 1964 J. Am. Chem. Soc. 86 3485
[15]Adachi K and Kotaka T 1993 Prog. Polym. Sci. 18 585
[16]Sillren P 2013 Trees, Queues and Alcohols Ph. D. dissertation (Göteborg: Chalmers University of Technology)
[17]Yomogida Y, Sato Y, Nozaki R, Mishina T and Nakahara J 2010 J. Mol. Liq. 154 31
[18]Vrhovšek A, Gereben O, Pothoczki S, Tomšič M, Jamnik A, Kohara S and Pusztai L 2010 J. Phys.: Condens. Matter 22 404214
[19]Sahoo A, Sarkar S, Krishna P S R, Bhagat V and Joarder R N 2008 Pramana 71 133
[20]Tamenori Y, Okada K, Takahashi O, Arakawa S, Tabayashi K, Hiraya A, Gejo T and Honma K 2008 J. Chem. Phys. 128 124321
[21]Tomšič M, Jamnik A, Fritz-Popovski G, Glatter O and Vlček L 2007 J. Phys. Chem. B 111 1738
[22]Kashtanov S, Augustson A, Rubensson J E, Nordgren J, Ågren H, Guo J H and Luo Y 2005 Phys. Rev. B 71 104205
[23]Guo J H, Luo Y, Augustsson A, Kashtanov S, Rubensson J E, Shuh D K, Ågren H and Nordgren J 2003 Phys. Rev. Lett. 91 157401
[24]Maccallum J L and Tieleman D P 2002 J. Am. Chem. Soc. 124 15085
[25]Pálinkás G, Hawlicka E and Heinzinger K 1987 J. Phys. Chem. 91 4334
[26]Wang L N, Zhao X Y and Huang Y N 2019 Int. J. Mod. Phys. B (submitted)
[27]Cao M S, Song W L, Hou Z L, Wen B and Yuan J 2010 Carbon 48 788
[28]Cao M S, Wang X X, Cao W Q, Fang X Y, Wen B and Yuan J 2018 Small 14 1800987
[29]Glauber R J 1963 J. Math. Phys. 4 294
[30]Huang Y N, Wang C J and Riande E 2005 J. Chem. Phys. 122 144502
[31]Zhang J L, Wang L N, Zhao X Y, Zhang L L, Zhou H W, Wei L and Huang Y N 2011 Chin. Phys. B 20 26401
[32]Zhang J L, Wang L N, Zhou H W, Zhan L L, Zhao X Y and Huang Y N 2010 Chin. Phys. B 19 56403
[33]Zhao X Y, Wang L N, Fan X H, Zhang L L, Wei L, Zhang J L and Huang Y N 2011 Acta Phys. Sin. 60 036403 (in Chinese)
Related articles from Frontiers Journals
[1] Ju-Geng Li, Sen-Miao Yang, Xin Chen, Nai-Feng Zhuang, Qi-Biao Zhu, An-Hua Wu, Xian Lin, Guo-Hong Ma, Zuan-Ming Jin, Jian-Quan Yao. Temperature-Dependent Dielectric Characterization of Magneto-Optical Tb$_{3}$Sc$_{2}$Al$_{3}$O$_{12}$ Crystal Investigated by Terahertz Time-Domain Spectroscopy[J]. Chin. Phys. Lett., 2019, 36(4): 097701
[2] Kai-Lun Zhang, Zhi-Ling Hou, Ling-Bao Kong, Hui-Min Fang, Ke-Tao Zhan. Origin of Negative Imaginary Part of Effective Permittivity of Passive Materials[J]. Chin. Phys. Lett., 2017, 34(9): 097701
[3] Zhen Yuan, Jin-Long Zhu, Shao-Min Feng, Chang-Chun Wang, Li-Juan Wang, Qing-Qing Liu, Chang-Qing Jin. Wide-Temperature-Range Dielectric Permittivity Measurement under High Pressure[J]. Chin. Phys. Lett., 2017, 34(4): 097701
[4] LIANG Han, ZHAN Ke-Tao, HOU Zhi-Ling. Extraordinary Optical Confinement in a Silicon Slot Waveguide with Metallic Gratings[J]. Chin. Phys. Lett., 2015, 32(06): 097701
[5] Ahmet Kaya, Şemsettin Altındal, Yasemin Şafak Asar, Zekayi Sönmez. On the Voltage and Frequency Distribution of Dielectric Properties and ac Electrical Conductivity in Al/SiO2/p-Si (MOS) Capacitors[J]. Chin. Phys. Lett., 2013, 30(1): 097701
[6] R. Ertuğrul, A. Tataroğlu. Influence of Temperature and Frequency on Dielectric Permittivity and ac Conductivity of Au/SnO2/n-Si (MOS) Structures[J]. Chin. Phys. Lett., 2012, 29(7): 097701
[7] MA Zhi, CAO Chen-Tao, LIU Qing-Fang, WANG Jian-Bo. A New Method to Calculate the Degree of Electromagnetic Impedance Matching in One-Layer Microwave Absorbers[J]. Chin. Phys. Lett., 2012, 29(3): 097701
[8] HOU Zhi-Ling**, KONG Ling-Bao, JIN Hai-Bo, CAO Mao-Sheng, LI Xiao, QI Xin. The Comprehensive Retrieval Method of Electromagnetic Parameters Using the Scattering Parameters of Metamaterials for Two Choices of Time-Dependent Factors[J]. Chin. Phys. Lett., 2012, 29(1): 097701
[9] WU Yu-Qiang, WU Hong-Ying**, ZHAO Jie, LU Cui-Min, ZHANG Bao-Long, LIU Qing-Suo, MA Yong-Chang, . The Evidence for Ferroelectricity on Magnetite Ceramics below the Verwey Transition[J]. Chin. Phys. Lett., 2011, 28(12): 097701
[10] CAO Wen-Qiang, , LU Ming-Ming, WEN Bo, CHEN Yuan-Lu, LI Hong-Bo, YUAN Jie**, CAO Mao-Sheng** . MWCNTs/SiO2 Composite System: Carrier Transmission, Twin-Percolation and Dielectric Properties[J]. Chin. Phys. Lett., 2011, 28(10): 097701
[11] HE Xiao-Yang, CHEN Qi, LI Lin-Cui, YANG Chun**, LI Biao, ZHOU Bang-Hua, TANG Chuan-Xiang . Nonresonant Metamaterials with an Ultra-High Permittivity[J]. Chin. Phys. Lett., 2011, 28(5): 097701
[12] MA Yong-Chang, ZHANG Jian-Zhu, ZHAO Jie, LIU Qing-Suo. Temperature- and Frequency-Dependent Dielectric Properties of La1.5Sr0.5NiO4-δ[J]. Chin. Phys. Lett., 2010, 27(8): 097701
[13] YANG Lu. Electrical Characterization of Deep Trap Properties in High-k Thin-Film HfO2 Dielectric[J]. Chin. Phys. Lett., 2010, 27(7): 097701
[14] ZANG Guo-Zhong, YI Xiu-Jie, XU Zhi-Jun, FU Peng, ZHAO Li-Min, PU Xi-Peng. Phase Structures of (K0.48Na0.52)0.945Li0.055Sb0.05Nb0.95O3 Piezoceramics[J]. Chin. Phys. Lett., 2010, 27(1): 097701
[15] WANG Zhuo, LI Yong-Xiang. Improvement in Dielectric Tunability of Ba0.6Sr0.4TiO4-Mg2TiO4 Composite Ceramics via Heterogeneous Nucleation Processing[J]. Chin. Phys. Lett., 2009, 26(11): 097701
Viewed
Full text


Abstract