Chin. Phys. Lett.  2019, Vol. 36 Issue (9): 093701    DOI: 10.1088/0256-307X/36/9/093701
ATOMIC AND MOLECULAR PHYSICS |
Experimental Realization of Degenerate Fermi Gases of $^{87}$Sr Atoms with 10 or Two Spin Components
Wei Qi1, Ming-Cheng Liang1, Han Zhang1, Yu-Dong Wei1, Wen-Wei Wang1, Xu-Jie Wang1, Xibo Zhang1,2,3**
1International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871
2Collaborative Innovation Center of Quantum Matter, Beijing 100871
3Beijing Academy of Quantum Information Sciences, Beijing 100193
Cite this article:   
Wei Qi, Ming-Cheng Liang, Han Zhang et al  2019 Chin. Phys. Lett. 36 093701
Download: PDF(852KB)   PDF(mobile)(847KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We report the experimental realization of quantum degenerate Fermi gases of $^{87}$Sr atoms under controlled 10- and dual-nuclear-spin configurations. Based on laser cooling and evaporative cooling, we achieve an ultracold Fermi gas of 10$^{5}$ atoms equally distributed over 10 spin states, with a temperature of $T/T_{\rm F}=0.21$. We further prepare a dual-spin gas by optically pumping atoms to the $m_{\rm F}=9/2$ and $m_{\rm F}=7/2$ states and observe a slightly lower $T/T_{\rm F}$ than that for a 10-spin gas under the same trapping condition, showing efficient evaporative cooling under a decreasing number ${\cal N}$ of spin states (${\cal N}\geqslant 2$) despite the increasing importance of Pauli exclusion. Given that rethermalization becomes less efficient with ${\cal N}$ approaching unity, we evaporatively cool an almost polarized gas to 130 nK. The simple and efficient preparation of ultracold Fermi gases of $^{87}$Sr with tunable spin configurations provides a first step towards engineering topological quantum systems.
Received: 21 May 2019      Published: 23 August 2019
PACS:  37.10.De (Atom cooling methods)  
  67.85.Lm (Degenerate Fermi gases)  
  67.85.-d (Ultracold gases, trapped gases)  
Fund: Supported by the National Key Research and Development Program of China under Grant Nos 2016YFA0300901 and 2018YFA0305601, the National Natural Science Foundation of China under Grant No 11874073, and the International Center for Quantum Materials of Peking University.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/9/093701       OR      https://cpl.iphy.ac.cn/Y2019/V36/I9/093701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Wei Qi
Ming-Cheng Liang
Han Zhang
Yu-Dong Wei
Wen-Wei Wang
Xu-Jie Wang
Xibo Zhang
[1]Daley A J, Boyd M M, Ye J and Zoller P 2008 Phys. Rev. Lett. 101 170504
[2]Campbell S L, Hutson R B, Marti G E, Goban A, Oppong N D, McNally R L, Sonderhouse L, Robinson J M, Zhang W, Bloom B J and Ye J 2017 Science 358 90
[3]Lin Y G , Wang Q, Li Y, Meng F, Lin B K , Zang E J , Sun Z, Fang F, Li T C and Fang Z J 2015 Chin. Phys. Lett. 32 090601
[4]Tian X, Xu Q, Yin M, Kong D, Wang Y, Lu B, Liu H, Ren J and Chang H 2015 Acta Opt. Sin. 35 s102001
[5]Tokura Y and Nagaosa N 2000 Science 288 462
[6]Martin M J, Bishof M, Swallows M D, Zhang X, Benko C, von-Stecher J, Gorshkov A V, Rey A M and Ye J 2013 Science 341 632
[7]Zhang X, Bishof M, Bromley S L, Kraus C V, Safronova M S, Zoller P, Rey A M and Ye J 2014 Science 345 1467
[8]Kolkowitz S, Bromley S L, Bothwell T, Wall M L, Marti G E, Koller A P, Zhang X, Rey A M and Ye J 2017 Nature 542 66
[9]Banerjee D, Bögli M, Dalmonte M, Rico E, Stebler P, Wiese U J and Zoller P 2013 Phys. Rev. Lett. 110 125303
[10]Eckert K, Romero-Isart O, Rodriguez M, Lewenstein M, Polzik E S and Sanpera A 2008 Nat. Phys. 4 50
[11]Ludlow A D, Boyd M M, Ye J, Peik E and Schmidt P O 2015 Rev. Mod. Phys. 87 637
[12]Zhang X and Ye J 2016 Natl. Sci. Rev. 3 189
[13]DeSalvo B J, Yan M, Mickelson P G, Martinez de E Y N and Killian T C 2010 Phys. Rev. Lett. 105 030402
[14]Tey M K, Stellmer S, Grimm R and Schreck F 2010 Phys. Rev. A 82 011608
[15]Stellmer S, Schreck F and Killian T C 2014 Annu. Rev. Cold Atoms Molecules vol 2 chapter 1 p 1
[16]Goban A, Hutson R B, Marti G E, Campbell S L, Perlin M A, Julienne P S, D'Incao J P, Rey A M and Ye J 2018 Nature 563 369
[17]Ku M J H, Sommer A T, Cheuk L W and Zwierlein M W 2012 Science 335 563
[18]Bakr W S, Preiss P M, Tai M E, Ma R, Simon J and Greiner M 2011 Nature 480 500
[19]Esslinger T 2010 Annu. Rev. Condens. Matter Phys. 1 129
[20]Liu X J , Law K T and Ng T K 2014 Phys. Rev. Lett. 112 086401
[21]Zhang L, Zhang L and Liu X J 2019 Phys. Rev. A 99 053606
[22]Stellmer S, Grimm R and Schreck F 2011 Phys. Rev. A 84 043611
[23]Yasuda M and Katori H 2004 Phys. Rev. Lett. 92 153004
[24]DeMarco B 2001 PhD Dissertation (University of Colorado at Boulder)
[25]Campbell S L 2017 PhD Dissertation (University of Colorado at Boulder)
Related articles from Frontiers Journals
[1] Zhu Ma, Chengyin Han, Xunda Jiang, Ruihuan Fang, Yuxiang Qiu, Minhua Zhao, Jiahao Huang, Bo Lu, and Chaohong Lee. Production of $^{87}$Rb Bose–Einstein Condensate in an Asymmetric Crossed Optical Dipole Trap[J]. Chin. Phys. Lett., 2021, 38(10): 093701
[2] Xiang-Chuan Yan, Da-Li Sun, Lu Wang, Jing Min, Shi-Guo Peng, and Kai-Jun Jiang. Production of Degenerate Fermi Gases of $^6$Li Atoms in an Optical Dipole Trap[J]. Chin. Phys. Lett., 2021, 38(5): 093701
[3] Yadong Wu, Zengming Meng, Kai Wen, Chengdong Mi, Jing Zhang, and Hui Zhai. Active Learning Approach to Optimization of Experimental Control[J]. Chin. Phys. Lett., 2020, 37(10): 093701
[4] Zhenlian Shi, Ziliang Li, Pengjun Wang, Zengming Meng, Lianghui Huang, Jing Zhang. Sub-Doppler Laser Cooling of $^{23}$Na in Gray Molasses on the $D_{2}$ Line[J]. Chin. Phys. Lett., 2018, 35(12): 093701
[5] Tian-You Gao, Dong-Fang Zhang, Ling-Ran Kong, Rui-Zong Li, Kai-Jun Jiang. Observation of Atomic Dynamic Behaviors in the Evaporative Cooling by In-Situ Imaging the Plugged Hole of Ultracold Atoms[J]. Chin. Phys. Lett., 2018, 35(8): 093701
[6] Jiang-Ling Yang, Yun Long, Wei-Wei Gao, Lan Jin, Zhan-Chun Zuo, Ru-Quan Wang. Enhanced Loading of $^{40}$K from Natural Abundance Potassium Source with a High Performance 2D$^{+}$ MOT[J]. Chin. Phys. Lett., 2018, 35(3): 093701
[7] Xiu-Mei Wang, Yan-Ling Meng, Ya-Ning Wang, Jin-Yin Wan, Ming-Yuan Yu, Xin Wang, Ling Xiao, Tang Li, Hua-Dong Cheng, Liang Liu. Dick Effect in the Integrating Sphere Cold Atom Clock[J]. Chin. Phys. Lett., 2017, 34(6): 093701
[8] Dong-Fang Zhang, Tian-You Gao, Ling-Ran Kong, Kai Li, Kai-Jun Jiang. Production of Rubidium Bose–Einstein Condensate in an Optically Plugged Magnetic Quadrupole Trap[J]. Chin. Phys. Lett., 2016, 33(07): 093701
[9] Kang-Kang Liu, Ru-Chen Zhao, Wei Gou, Xiao-Hu Fu, Hong-Li Liu, Shi-Qi Yin, Jian-Fang Sun, Zhen Xu, Yu-Zhu Wang. A Single Folded Beam Magneto-Optical Trap System for Neutral Mercury Atoms[J]. Chin. Phys. Lett., 2016, 33(07): 093701
[10] Lin Li, Qiu-Zhi Qu, Bin Wang, Tang Li, Jian-Bo Zhao, Jing-Wei Ji, Wei Ren, Xin Zhao, Mei-Feng Ye, Yuan-Yuan Yao, De-Sheng Lü, Liang Liu. Initial Tests of a Rubidium Space Cold Atom Clock[J]. Chin. Phys. Lett., 2016, 33(06): 093701
[11] YU Wei-Wei, YU Rong-Mei, CHENG Yong-Jun. Tune-Out Wavelengths for the Rb Atom[J]. Chin. Phys. Lett., 2015, 32(12): 093701
[12] ZHANG Feng, LONG Yun, YANG Jiang-Ling, MA Guo-Qiang, YIN Ji-Ping, WANG Ru-Quan. High-Performance Sodium Bose–Einstein Condensate Apparatus with a Hybrid Trap and Long-Distance Magnetic Transfer[J]. Chin. Phys. Lett., 2015, 32(12): 093701
[13] WANG Qiang, LIN Yi-Ge, GAO Fang-Lin, LI Ye, LIN Bai-Ke, MENG Fei, ZANG Er-Jun, LI Tian-Chu, FANG Zhan-Jun. A Longitudinal Zeeman Slower Based on Ring-Shaped Permanent Magnets for a Strontium Optical Lattice Clock[J]. Chin. Phys. Lett., 2015, 32(10): 093701
[14] LI Wen-Fang, DU Jin-Jin, WEN Rui-Juan, LI Gang, ZHANG Tian-Cai. Trapping and Cooling of Single Atoms in an Optical Microcavity by a Magic-Wavelength Dipole Trap[J]. Chin. Phys. Lett., 2015, 32(10): 093701
[15] ZHENG Ben-Chang, CHENG Hua-Dong, MENG Yan-Ling, XIAO Ling, WAN Jin-Yin, LIU Liang. Observation of Faraday Rotation in Cold Atoms in an Integrating Sphere[J]. Chin. Phys. Lett., 2014, 31(07): 093701
Viewed
Full text


Abstract