Chin. Phys. Lett.  2019, Vol. 36 Issue (7): 077201    DOI: 10.1088/0256-307X/36/7/077201
Spin Transport under In-plane Electric Fields with Different Orientations in Undoped InGaAs/AlGaAs Multiple Quantum Wells
Xiao-di Xue1,2, Yu Liu2,3, Lai-pan Zhu2,4, Wei Huang2,5, Yang Zhang2,3, Xiao-lin Zeng2,3, Jing Wu2,3, Bo Xu2, Zhan-guo Wang2, Yong-hai Chen2,3**, Wei-feng Zhang1**
1Henan Key Laboratory of Photovoltaic Materials, Henan University, Kaifeng 475004
2Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Beijing 100083
3Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049
4Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083
5Science and Technology on Monolithic Integrated Circuits and Modules Laboratory, Nanjing Electronic Devices Institute, Nanjing 210016
Cite this article:   
Xiao-di Xue, Yu Liu, Lai-pan Zhu et al  2019 Chin. Phys. Lett. 36 077201
Download: PDF(583KB)   PDF(mobile)(578KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The spin-polarized photocurrent is used to study the in-plane electric field dependent spin transport in undoped InGaAs/AlGaAs multiple quantum wells. In the temperature range of 77–297 K, the spin-polarized photocurrent shows an anisotropic spin transport under different oriented in-plane electric fields. We ascribe this characteristic to two dominant mechanisms: the hot phonon effect and the Rashba spin-orbit effect which is influenced by the in-plane electric fields with different orientations. The formulas are proposed to fit our experiments, suggesting a guide of potential applications and devices.
Received: 22 February 2019      Published: 20 June 2019
PACS:  72.25.Dc (Spin polarized transport in semiconductors)  
  72.40.+w (Photoconduction and photovoltaic effects)  
  72.25.Fe (Optical creation of spin polarized carriers)  
Fund: Supported by the National Basic Research Program of China under Grant No 2015CB921503, the National Natural Science Foundation of China under Grant Nos 61474114, 11574302, 61627822 and 11704032, and the National Key Research and Development Program of China under Grant Nos 2018YFA0209103, 2016YFB0402303 and 2016YFB0400101.
URL:       OR
E-mail this article
E-mail Alert
Articles by authors
Xiao-di Xue
Yu Liu
Lai-pan Zhu
Wei Huang
Yang Zhang
Xiao-lin Zeng
Jing Wu
Bo Xu
Zhan-guo Wang
Yong-hai Chen
Wei-feng Zhang
[1]Jedema F J, Filip A T and van Wees B J 2001 Nature 410 345
[2]Bychkov Y A and Rashba E I 1984 JETP Lett. 39 78
[3]Zhang S F 2000 Phys. Rev. Lett. 85 393
[4]Zeng X L, Yu J L, Cheng S Y, Lai Y F, Chen Y H and Huang W 2017 J. Appl. Phys. 121 193901
[5]Yu J L, Chen Y H, Jiang C Y, Liu Y, Ma H and Zhu L P 2012 Appl. Phys. Lett. 100 142109
[6]Yu J L, Chen Y H, Jiang C Y, Liu Y and Ma H 2011 J. Appl. Phys. 109 053519
[7]Zhu L, Liu Y, Jiang C, Yu J, Gao H, Ma H, Qin X, Li Y, Wu Q and Chen Y 2014 Appl. Phys. Lett. 105 152103
[8]Datta S and Das B 1990 Appl. Phys. Lett. 56 665
[9]Wunderlich J, Park B G, Irvine A C, Zarbo L P, Rozkotova E, Nemec P, Novak V, Sinova J and Jungwirth T 2010 Science 330 1801
[10]Cartoixa X, Ting D Z Y and Chang Y C 2003 Appl. Phys. Lett. 83 1462
[11]Schliemann J, Egues J C and Loss D 2003 Phys. Rev. Lett. 90 146801
[12]Liang F, Gao B L, Gu Y and Yang C 2016 Chin. Phys. Lett. 33 047201
[13]Schliemann J and Loss D 2003 Phys. Rev. B 68 165311
[14]Hernandez-Minguez A, Biermann K, Hey R and Santos P V 2014 Phys. Status Solidi B 251 1736
[15]Ma H, Jiang C Y, Liu Y, Zhu L P, Qin X D and Chen Y H 2013 Appl. Phys. Lett. 102 232402
[16]Ganichev S D, Ivchenko E L and Prettl W 2002 Physica E 14 166
[17]Cho K S, Chen Y F, Tang Y Q and Shen B 2007 Appl. Phys. Lett. 90 041909
[18]Yu J L, Cheng S Y, Lai Y F, Zheng Q, Zhu L P, Chen Y H and Ren J 2015 Opt. Express 23 27250
[19]Yin C M, Shen B, Zhang Q, Xu F J, Tang N, Cen L B, Wang X Q, Chen Y H and Yu J L 2010 Appl. Phys. Lett. 97 181904
[20]Giglberger S, Golub L E, Bel'kov V V, Danilov S N, Schuh D, Gerl C, Rohlfing F, Stahl J, Wegscheider W, Weiss D, Prettl W and Ganichev S D 2007 Phys. Rev. B 75 035327
[21]Ganichev S D and Prettl W 2003 J. Phys.: Condens. Matter 15 R935
[22]Weber W, Ganichev S D, Danilov S N, Weiss D, Prettl W, Kvon Z D, Bel'kov V V, Golub L E, Cho H I and Lee J H 2005 Appl. Phys. Lett. 87 262106
[23]Yu J, Chen Y, Cheng S and Lai Y 2013 Physica E 49 92
[24]Dyakonov M I and Perel V I 1971 Phys. Lett. A 35 459
[25]Averkiev N S, Golub L E and Willander M 2002 J. Phys.: Condens. Matter 14 R271
[26]Idrish M M 2011 J. Appl. Phys. 110 113704
[27]Zhou J, Cheng J L and Wu M W 2007 Phys. Rev. B 75 045305
[28]Okamoto N, Kurebayashi H, Harii K, Kajiwara Y, Beere H, Farrer I, Trypiniotis T, Ando K, Ritchie D A, Barnes C H W and Saitoh E 2011 Appl. Phys. Lett. 98 242104
Related articles from Frontiers Journals
[1] Feng Liang, Ben-Ling Gao, Yu Gu, Cheng Yang. Detecting Spin Bias with Circularly Polarized Light[J]. Chin. Phys. Lett., 2016, 33(04): 077201
[2] CHEN Jian, XU Huai-Zhe. Directional Plasmon Filtering in a Two-Dimensional Electron Gas Embedded in High-Index Crystallographic Planes[J]. Chin. Phys. Lett., 2014, 31(03): 077201
[3] H. A. Rahnamaye Aliabad, M. Bazrafshan, H. Vaezi, Masood Yousaf, Junaid Munir, M. A. Saeed. Optoelectronic Properties of Pure and Co Doped Indium Oxide by Hubbard and modified Becke–Johnson Exchange Potentials[J]. Chin. Phys. Lett., 2013, 30(12): 077201
[4] LI Zhen-Shan, PAN Hui, LÜ Rong. Spin-Polarized Currents in Double Quantum Dots with Rashba Spin-Orbit Interactions[J]. Chin. Phys. Lett., 2013, 30(8): 077201
[5] XU Zhong-Hui, XIAO Wen, CHEN Yu-Guang. A Spin-Polarized Current Direction Controller Based on a Nonuniform Rashba Quantum Wire[J]. Chin. Phys. Lett., 2013, 30(5): 077201
[6] A. John Peter, Chang Woo Lee. Photo-Induced Electron Spin Polarization in a Narrow Band Gap Semiconductor Nanostructure[J]. Chin. Phys. Lett., 2012, 29(11): 077201
[7] XIAO Xian-Bo, LI Fei, and LIU Nian-Hua. Spin Filtering in a Rashba Electron Waveguide Induced by Edge Disorder[J]. Chin. Phys. Lett., 2012, 29(8): 077201
[8] Samad Javidan* . Spin Filtering in a Nanowire Superlattice by Dresselhause Spin-Orbit Coupling[J]. Chin. Phys. Lett., 2011, 28(8): 077201
[9] HUO Qiu-Hong, WANG Ru-Zhi, CHEN Si-Ying, XUE Kun, YAN Hui. Spin Transport in a Magnetic Superlattice with Broken Two-Fold Symmetry[J]. Chin. Phys. Lett., 2010, 27(6): 077201
[10] Eerdunchaolu, XIN Wei, ZHAO Yu-Wei. Influence of Rashba SOI and Polaronic Effects on the Ground-State Energy of Electrons in Semiconductor Quantum Rings[J]. Chin. Phys. Lett., 2010, 27(1): 077201
[11] AN Xing-Tao, ZHAO Jin-Rong, , LIU Jian-Jun,. Conductance in an Aharonov-Bohm Interferometer with Parallel-Coupled Double Dots[J]. Chin. Phys. Lett., 2009, 26(9): 077201
[12] ZHAO Jun-Qing, QIAO Shi-Zhu, JIA Zhen-Feng, ZHANG Ning-Yu, JI Yan-Ju, PANG Yan-Tao, CHEN Ying, FU Gang. Spin Coulomb Dragging Inhibition of Spin-Polarized Electric Current Injecting into Organic Semiconductors[J]. Chin. Phys. Lett., 2008, 25(12): 077201
[13] LIU Yu-Min, YU Zhong-Yuan, REN Xiao-Min. Influence of Strain-Reducing Layer on Strain Distribution of Self-Organized InAs/GaAs Quantum Dot and Redshift of Photoluminescence Wavelength[J]. Chin. Phys. Lett., 2008, 25(5): 077201
[14] GAO Wen-Zhu, SUN Lang, ZHENG Yi-Song. Electronic Transport through a Waveguide in the Presence of a Magnetic Obstacle[J]. Chin. Phys. Lett., 2007, 24(6): 077201
[15] PANG Zhi-Yong, CHEN Yan-Xue, LIU Tian-Tian, ZHANG Yun-Pang, XIE Shi-Jie, YAN Shi-Shen, HAN Sheng-Hao. Giant Magnetoresistance in La0.67Ca0.33MnO3/Alq3/Co Sandwiched-Structure Organic Spin Valves[J]. Chin. Phys. Lett., 2006, 23(6): 077201
Full text