Chin. Phys. Lett.  2019, Vol. 36 Issue (6): 067503    DOI: 10.1088/0256-307X/36/6/067503
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Anisotropy Engineering Edge Magnetism in Zigzag Honeycomb Nanoribbons
Baoyue Li1, Yifeng Cao2, Lin Xu2, Guang Yang3,2**, Zhi Ma1, Miao Ye4, Tianxing Ma2
1School of Physics and Electronic-Electrical Engineering, Ningxia University, Yinchuan 750021
2Department of Physics, Beijing Normal University, Beijing 100875
3School of Science, Hebei University of Science and Technology, Shijiazhuang 050018
4College of Information Science and Engineering, Guilin University of Technology, Guilin 541004
Cite this article:   
Baoyue Li, Yifeng Cao, Lin Xu et al  2019 Chin. Phys. Lett. 36 067503
Download: PDF(811KB)   PDF(mobile)(797KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract It has been demonstrated that the zigzag honeycomb nanoribbons exhibit an intriguing edge magnetism. Here the effect of the anisotropy on the edge magnetism in zigzag honeycomb nanoribbons is investigated using two kinds of large-scale quantum Monte Carlo simulations. The anisotropy in zigzag honeycomb nanoribbons is characterized by the ratios of nearest-neighbor hopping integrals $t_{1}$ in one direction and $t_{2}$ in another direction. Considering the electron-electron correlation, it is shown that the edge ferromagnetism could be enhanced greatly as $t_{2}/|t_{1}|$ increases from 1 to 3, which not only presents an avenue for the control of this magnetism but is also useful for exploring further novel magnetism in new nano-scale materials.
Received: 20 February 2019      Published: 18 May 2019
PACS:  75.75.-c (Magnetic properties of nanostructures)  
  75.50.Pp (Magnetic semiconductors)  
Fund: Supported by the National Natural Science Foundation of China under Grant No 11774033, and the Beijing Natural Science Foundation under Grant No 1192011.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/6/067503       OR      https://cpl.iphy.ac.cn/Y2019/V36/I6/067503
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Baoyue Li
Yifeng Cao
Lin Xu
Guang Yang
Zhi Ma
Miao Ye
Tianxing Ma
[1]Novoselov K S, Fal V I, Colombo L, Gellert P R, Schwab M G and Kim K 2012 Nature 490 192
[2]Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V and Geim A K 2005 Proc. Natl. Acad. Sci. USA 102 10451
[3]Sun Z and Chang H 2014 ACS Nano 8 4133
[4]Gao J, Zhang J, Liu H, Zhang Q and Zhao J 2013 Nanoscale 5 9785
[5]Meng L, Wang Y, Zhang L, Du S, Wu R, Li L, Zhang Y, Li G, Zhou H, Hofer W A and Gao H J 2013 Nano Lett. 13 685
[6]Yang K, Huang W Q, Hu W, Huang G F and Wen S 2018 Nanoscale 10 14667
[7]Liu C C, Feng W and Yao Y 2011 Phys. Rev. Lett. 107 076802
[8]Li L, Wang Y, Xie X, Li X B, Wang Y Q, Wu R, Sun H, Zhang S and Gao H J 2013 Nano Lett. 13 4671
[9]Buscema M, Groenendijk D J, Blanter S I, Steele G A, van der Zant H S J and Castellanos-Gomez A 2014 Nano Lett. 14 3347
[10]Castellanos-Gomez A, Vicarelli L, Prada E, Isl, J O, Narasimha-Acharya K, Blanter S I, Groenendijk D J, Buscema M, Steele G A and Alvarez J 2014 2D Mater. 1 025001
[11]Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H and Zhang Y 2014 Nat. Nanotechnol. 9 372
[12]Liu H, Neal A T, Zhu Z, Luo Z, Xu X, Tománek D and Ye P D 2014 ACS Nano 8 4033
[13]Xia F, Wang H and Jia Y 2014 Nat. Commun. 5 4458
[14]Tran V, Soklaski R, Liang Y and Yang L 2014 Phys. Rev. B 89 235319
[15]Fei R and Yang L 2014 Nano Lett. 14 2884
[16]Guan J, Zhu Z and Tománek D 2014 Phys. Rev. Lett. 113 226801
[17]Zhao T, He C, Ma S, Zhang K, Peng X, Xie G and Zhong J 2015 J. Phys.: Condens. Matter 27 265301
[18]Wu M, Fu H, Zhou L, Yao K and Zeng X C 2015 Nano Lett. 15 3557
[19]Zhu Z and Tománek D 2014 Phys. Rev. Lett. 112 176802
[20]Schusteritsch G, Uhrin M and Pickard C J 2016 Nano Lett. 16 2975
[21]Wang H, Li X, Liu Z and Yang J 2017 Phys. Chem. Chem. Phys. 19 2402
[22]Zhang J L, Zhao S, Han C, Wang Z, Zhong S, Sun S, Guo R, Zhou X, Gu C D, Yuan K D et al 2016 Nano Lett. 16 4903
[23]Han W H, Kim S, Lee I H and Chang K J 2017 J. Phys. Chem. Lett. 8 4627
[24]Oka H, Brovko O O, Corbetta M, Stepanyuk V S, Sander D and Kirschner J 2014 Rev. Mod. Phys. 86 1127
[25]Son Y W, Cohen M L and Louie S G 2006 Nature 444 347
[26]Feldner H, Meng Z Y, Lang T C, Assaad F F, Wessel S and Honecker A 2011 Phys. Rev. Lett. 106 226401
[27]Cheng S, Yu J, Ma T and Peres N M R 2015 Phys. Rev. B 91 075410
[28]Viana-Gomes J, Pereira V M and Peres N M R 2009 Phys. Rev. B 80 245436
[29]Magda G, Jin X, Hagymási I, Vancsó P, Osváth Z, Nemes-Incze P, Hwang C, Biró L P and Tapasztó L 2014 Nature 514 608
[30]Yang L, Park C H, Son Y W, Cohen M L and Louie S G 2007 Phys. Rev. Lett. 99 186801
[31]Kou L, Tang C, Zhang Y, Heine T, Chen C and Frauenheim T 2012 J. Phys. Chem. Lett. 3 2934
[32]Zhu Z, Li C, Yu W, Chang D, Sun Q and Jia Y 2014 Appl. Phys. Lett. 105 113105
[33]Du Y, Liu H, Xu B, Sheng L, Yin J, Duan C G and Wan X 2015 Sci. Rep. 5 8921
[34]Yang G, Xu S, Zhang W, Ma T and Wu C 2016 Phys. Rev. B 94 075106
[35]Yazyev O V 2010 Rep. Prog. Phys. 73 056501
[36]Kotov V N, Uchoa B, Pereira V M, Guinea F and Neto A C 2012 Rev. Mod. Phys. 84 1067
[37]Fujita M, Wakabayashi K, Nakada K and Kusakabe K 1996 J. Phys. Soc. Jpn. 65 1920
[38]Yang L, Cohen M L and Louie S G 2008 Phys. Rev. Lett. 101 186401
[39]Guinea F, Katsnelson M and Geim A 2010 Nat. Phys. 6 30
[40]Johari P and Shenoy V B 2012 ACS Nano 6 5449
[41]Ni Z H, Yu T, Lu Y H, Wang Y Y, Feng Y P and Shen Z X 2008 ACS Nano 2 2301
[42]Yang G, Li B, Zhang W, Ye M and Ma T 2017 J. Phys.: Condens. Matter 29 365601
[43]Wang X, Jones A M, Seyler K L, Tran V, Jia Y, Zhao H, Wang H, Yang L, Xu X and Xia F 2015 Nat. Nanotechnol. 10 517
[44]Carvalho A, Rodin A and Neto A C 2014 Europhys. Lett. 108 47005
[45]Peng X, Copple A and Wei Q 2014 J. Appl. Phys. 116 144301
[46]Lieb E H 1989 Phys. Rev. Lett. 62 1201
[47]Ezawa M 2014 New J. Phys. 16 115004
[48]Hirsch J E 1985 Phys. Rev. B 31 4403
[49]Blankenbecler R, Scalapino D and Sugar R 1981 Phys. Rev. D 24 2278
[50]Santos R R D 2003 Braz. J. Phys. 33 36
[51]Zhang S et al 1995 Phys. Rev. Lett. 74 3652
[52]Ma T, Lin H Q and Hu J 2013 Phys. Rev. Lett. 110 107002
[53]Ma T, Zhang L, Chang C C, Hung H H and Scalettar R T 2018 Phys. Rev. Lett. 120 116601
[54]Ma T, Yang F, Yao H and Lin H Q 2014 Phys. Rev. B 90 245114
[55]Ma T, Huang Z, Hu F and Lin H Q 2011 Phys. Rev. B 84 121410
[56]Wu Y, Liu G and Ma T 2013 Europhys. Lett. 104 27013
[57]Ma T, Lin H Q and Gubernatis J E 2015 Europhys. Lett. 111 47003
[58]Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
[59]Herbut I F 2006 Phys. Rev. Lett. 97 146401
[60]Parr R G, Craig D P and Ross I G 1950 J. Chem. Phys. 18 1561
[61]Schüler M, R?sner M, Wehling T O, Lichtenstein A I and Katsnelson M I 2013 Phys. Rev. Lett. 111 036601
Related articles from Frontiers Journals
[1] Xiao-Ping Ma, Hongguo Yang, Changfeng Li, Cheng Song, and Hong-Guang Piao. Nanocavity-Mediated Fast Magnetic Vortex Core In-Situ Switching by Local Magnetic Field[J]. Chin. Phys. Lett., 2021, 38(12): 067503
[2] Qingwei Fu, Kaiyuan Zhou, Lina Chen, Yongbing Xu, Tiejun Zhou, Dunhui Wang, Kequn Chi, Hao Meng, Bo Liu, Ronghua Liu, and Youwei Du. Field- and Current-Driven Magnetization Reversal and Dynamic Properties of CoFeB-MgO-Based Perpendicular Magnetic Tunnel Junctions[J]. Chin. Phys. Lett., 2020, 37(11): 067503
[3] Chao Yang, Zheng-Chuan Wang, and Gang Su. Magnetization Reversal of Single-Molecular Magnets by a Spin-Polarized Current[J]. Chin. Phys. Lett., 2020, 37(8): 067503
[4] Juan Ren, Song-Bin Zhang, Ping-Ping Liu. Magnetic and Electronic Properties of $\beta$-Graphyne Doped with Rare-Earth Atoms[J]. Chin. Phys. Lett., 2019, 36(7): 067503
[5] Hui-Fang Yang, Ling-Zhi Tang, Qiang Sun, Lei Sun, Zhen-Hua Li, Shu-Xia Ren. Ferromagnetism in High-Surface-Area ZnO Nanosheets Prepared by a Template-Assisted Hydrothermal Method[J]. Chin. Phys. Lett., 2018, 35(6): 067503
[6] Tian-Le Wang, Zhi-Gang Li, Li Zhang, Wei-Ping Chen, Shang-Shen Feng, Wen-Wu Zhong. Coercivity Ageing Effect on FePt Nanoparticles in Mesoporous Silica via Stepwise Synthesis Strategy[J]. Chin. Phys. Lett., 2018, 35(6): 067503
[7] Yu-Ting Liu, Li-Peng Hou, Shuang-Yang Zou, Li Zhang, Bian-Bian Liang, Yong-Chang Guo, Arfan Bukhtiar, Muhammad Umair Farooq, Bing-Suo Zou. EMP Formation in the Co(II) Doped ZnTe Nanowires[J]. Chin. Phys. Lett., 2018, 35(3): 067503
[8] Abdelkader Khouidmi, Hadj Baltache, Ali Zaoui. Magnetic and Electronic Properties of Double Perovskite Ba$_{2}$SmNbO$_{6 }$ without Octahedral Tilting by First Principle Calculations[J]. Chin. Phys. Lett., 2017, 34(7): 067503
[9] Ya-Qing Feng, Kui-Juan Jin, Chen Ge, Xu He, Lin Gu, Zhen-Zhong Yang, Hai-Zhong Guo, Qian Wan, Meng He, Hui-Bin Lu, Guo-Zhen Yang. Effect of Terraces at the Interface on the Structural and Physical Properties of La$_{0.8}$Sr$_{0.2}$MnO$_{3}$ Thin Films[J]. Chin. Phys. Lett., 2016, 33(07): 067503
[10] Jian-Fen Hu, Lin Feng, Wen-Xing Zhang, Yong Li, Ya-Xin Lu. Detection of DNA Bases Using Fe Atoms and Graphene[J]. Chin. Phys. Lett., 2016, 33(01): 067503
[11] GUO Min-Chen, LIU Wei-Fang, WU Ping, ZHANG Hong, XU Xun-Ling, WANG Shou-Yu, RAO Guang-Hui. Enhanced Magnetic and Dielectric Properties in Low-Content Tb-Doped BiFeO3 Nanoparticles[J]. Chin. Phys. Lett., 2015, 32(06): 067503
[12] CHANG Yong-Qin, SUN Qing-Ling, LONG Yi, WANG Ming-Wen. Effect of Crystalline Quality on Magnetic Properties of Mn-Doped ZnO Nanowires[J]. Chin. Phys. Lett., 2014, 31(12): 067503
[13] SHI Li-Kun, LOU Wen-Kai. Surface States of Bi2Se3 Nanowires in the Presence of Perpendicular Magnetic Fields[J]. Chin. Phys. Lett., 2014, 31(06): 067503
[14] LEI Shu-Lai, LI Bin, HUANG Jing, LI Qun-Xiang, YANG Jin-Long. A First-Principles Investigation of the Carrier Doping Effect on the Magnetic Properties of Defective Graphene[J]. Chin. Phys. Lett., 2013, 30(7): 067503
[15] Murtaza Saleem, Saadat A. Siddiqi, Shahid M. Ramay, Shahid Atiq, Shahzad Naseem. Origin of Ferromagnetism in Al and Ni Co-doped ZnO Based DMS Materials[J]. Chin. Phys. Lett., 2012, 29(10): 067503
Viewed
Full text


Abstract