Chin. Phys. Lett.  2019, Vol. 36 Issue (6): 066301    DOI: 10.1088/0256-307X/36/6/066301
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Negative Thermal Expansion of GaFe(CN)$_{6}$ and Effect of Na Insertion by First-Principles Calculations
Meng Li, Yuan Li, Chun-Yan Wang, Qiang Sun**
International Laboratory for Quantum Functional Materials of Henan, School of Physics and Engineering, Zhengzhou University, Zhengzhou 450001
Cite this article:   
Meng Li, Yuan Li, Chun-Yan Wang et al  2019 Chin. Phys. Lett. 36 066301
Download: PDF(825KB)   PDF(mobile)(811KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We study the negative thermal expansion (NTE) properties and effect of Na insertion on the NTE of the framework material GaFe(CN)$_{6}$ by first-principles calculations based on density functional theory within the quasi-harmonic approximation. The calculated results show that the material exhibits NTE due to the low transverse vibrational modes of the CN groups. The modes demonstrate larger negative values of the mode Grüneisen parameters. Once Na is introduced in the framework of the material, it prefers to locate at the center of the quadrates of the framework material and binds to the four N anions nearby. As a consequence, the transverse vibrational mode of the CN group is clearly hindered and the NTE of the material is weakened. Our theoretical calculations have clarified the mechanisms of NTE and the effect of the guest Na on the NTE of the framework material.
Received: 04 March 2019      Published: 18 May 2019
PACS:  63.20.dk (First-principles theory)  
  63.20.-e (Phonons in crystal lattices)  
  65.40.De (Thermal expansion; thermomechanical effects)  
  65.40.-b (Thermal properties of crystalline solids)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11874328 and 11372283.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/6/066301       OR      https://cpl.iphy.ac.cn/Y2019/V36/I6/066301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Meng Li
Yuan Li
Chun-Yan Wang
Qiang Sun
[1]Mary T A et al 1996 Science 272 90
[2]Chen J et al 2010 Physics 691 698 (in Chinese)
[3]Mohn P 1999 Nature 400 18
[4]Attfield J P 2011 Nature 480 465
[5]Dove M T and Fang H 2016 Rep. Prog. Phys. 79 066503
[6]Dubbeldam D et al 2007 Angew. Chem. Int. Ed. 46 4496
[7]Salvador J R et al 2003 Nature 425 702
[8]Arvanitidis J et al 2003 Nature 425 599
[9]Takenaka K and Takagi H 2005 Appl. Phys. Lett. 87 261902
[10]Hao Y et al 2001 Appl. Phys. Lett. 78 3277
[11]Li W H et al 2002 Phys. Rev. Lett. 89 135504
[12]Zakharchenko K V et al 2009 Phys. Rev. Lett. 102 046808
[13]Evans J S O et al 1997 J. Solid State Chem. 133 580
[14]Mary T A and Sleight A W 1999 J. Mater. Res. 14 912
[15]Mittal R and Chaplot S L 1999 Phys. Rev. B 60 7234
[16]Tallentire S E, Child F, Fall I et al 2013 J. Am. Chem. Soc. 135 12849
[17]Greve B K et al 2010 J. Am. Chem. Soc. 132 15496
[18]Chen J et al 2017 Nat. Commun. 8 14441
[19]Hu L et al 2016 J. Am. Chem. Soc. 138 8320
[20]Goodwin A L and Kepert C J 2005 Phys. Rev. B 71 140301
[21]Chapman K W et al 2006 J. Am. Chem. Soc. 128 7009
[22]Margadonna S et al 2004 J. Am. Chem. Soc. 126 15390
[23]Goodwin A L et al 2005 J. Am. Chem. Soc. 127 17980
[24]Goodwin A L et al 2008 Science 319 794
[25]Duyker S G et al 2013 Angew. Chem. 125 5374
[26]Gao Q L et al 2017 Angew. Chem. Int. Ed. 56 9023
[27]Han S S and Goddard W A 2007 J. Phys. Chem. C 111 15185
[28]Grobler I et al 2013 J. Am. Chem. Soc. 135 6411
[29]Zhou H L et al 2015 Nat. Commun. 6 6917
[30]Ohkoshi S et al 2007 Angew. Chem. 119 3302
[31]Kaye S S and Long J R 2005 J. Am. Chem. Soc. 127 6506
[32]Gao Q L et al 2018 Inorg. Chem. Front. 5 438
[33]Patra C R 2016 Theranostics. Nanomed. 11 569
[34]Gao Q L et al 2018 Inorg. Chem. 57 10918
[35]Gao Q L et al 2018 Inorg. Chem. 57 14027
[36]Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[37]Kresse G 1999 Phys. Rev. B 59 1758
[38]John K B et al 1996 Phys. Rev. Lett. 77 3865
[39]Togo A et al 2008 Phys. Rev. B 78 134106
[40]Wang L et al 2014 Mater. Chem. Phys. 148 214
[41]Wang Z et al 2013 J. Appl. Phys. 114 063508
[42]Chang D et al 2016 Phys. Chem. Chem. Phys. 18 14503
[43]Chang D et al 2017 Phys. Rev. B 95 104101
[44]Chang D et al 2017 Phys. Chem. Chem. Phys. 19 2067
[45]Souvatzis P and Eriksson O 2008 Phys. Rev. B 77 024110
Related articles from Frontiers Journals
[1] Kun Luo, Baozhong Li, Lei Sun, Yingju Wu, Yanfeng Ge, Bing Liu, Julong He, Bo Xu, Zhisheng Zhao, and Yongjun Tian. Novel Boron Nitride Polymorphs with Graphite-Diamond Hybrid Structure[J]. Chin. Phys. Lett., 2022, 39(3): 066301
[2] Chenqiang Hua, Hua Bai, Yi Zheng, Zhu-An Xu, Shengyuan A. Yang, Yunhao Lu, and Su-Huai Wei. Strong Coupled Magnetic and Electric Ordering in Monolayer of Metal Thio(seleno)phosphates[J]. Chin. Phys. Lett., 2021, 38(7): 066301
[3] Ruoyun Lv, Xigui Yang, Dongwen Yang, Chunyao Niu, Chunxiang Zhao, Jinxu Qin, Jinhao Zang, Fuying Dong, Lin Dong, and Chongxin Shan. Computational Prediction of a Novel Superhard $sp^{3}$ Trigonal Carbon Allotrope with Bandgap Larger than Diamond[J]. Chin. Phys. Lett., 2021, 38(7): 066301
[4] Kun Luo , Bing Liu , Lei Sun , Zhisheng Zhao, and Yongjun Tian . Design of a Class of New $sp^{2}$–$sp^{3}$ Carbons Constructed by Graphite and Diamond Building Blocks[J]. Chin. Phys. Lett., 2021, 38(2): 066301
[5] Yulou Ouyang, Zhongwei Zhang, Cuiqian Yu, Jia He, Gang Yan, and Jie Chen. Accuracy of Machine Learning Potential for Predictions of Multiple-Target Physical Properties[J]. Chin. Phys. Lett., 2020, 37(12): 066301
[6] Lei Guo, Gang Tang, Jiawang Hong. Mechanical Properties of Formamidinium Halide Perovskites FABX$_{3}$ (FA=CH(NH$_{2})_{2}$; B=Pb, Sn; X=Br, I) by First-Principles Calculations[J]. Chin. Phys. Lett., 2019, 36(5): 066301
[7] Qing Wang, Hai-Peng Wang, De-Lu Geng, Ming-Xing Li, Bing-Bo Wei. A Calorimetric Study Assisted with First Principle Calculations of Specific Heat for Si-Ge Alloys within a Broad Temperature Range[J]. Chin. Phys. Lett., 2018, 35(12): 066301
[8] Pei GONG, Ya-Lin LI, Ya-Hui JIA, Xiao-Yong FANG. First Principle Study on Optical Properties of Tri-Group Doped (6,6) SiC Nanotubes[J]. Chin. Phys. Lett., 2018, 35(11): 066301
[9] Zi-Wei Zhu, Ji-Yuan Zheng, Lai Wang, Bing Xiong, Chang-Zheng Sun, Zhi-Biao Hao, Yi Luo, Yan-Jun Han, Jian Wang, Hong-Tao Li. $Ab\ Initio$ Calculation of Dielectric Function in Wurtzite GaN Based on Walter's Model[J]. Chin. Phys. Lett., 2017, 34(3): 066301
[10] Yu-Ping Cang, Shuai-Bin Lian, Hui-Ming Yang, Dong Chen. Predicting Physical Properties of Tetragonal, Monoclinic and Orthorhombic $M_{3}$N$_{4}$ ($M$=C, Si, Sn) Polymorphs via First-Principles Calculations[J]. Chin. Phys. Lett., 2016, 33(06): 066301
[11] Jing-He Wu, Chang-Xin Liu. Ground-State Structure and Physical Properties of NB$_{2}$ Predicted from First Principles[J]. Chin. Phys. Lett., 2016, 33(03): 066301
[12] Zhen-Ye Zhu, Si-Qi Wang, Yan-Ming Fu. First-Principles Study of Properties of Strained PbTiO$_{3}$/KTaO$_{3}$ Superlattice[J]. Chin. Phys. Lett., 2016, 33(02): 066301
[13] ZHANG Jian, LI Hai-Tao, GUO Jun-Hong, HU Fang-Ren. Raman Scattering Modification Induced by Structural Change in Alumina Polymorphs[J]. Chin. Phys. Lett., 2015, 32(12): 066301
[14] FENG Shi-Quan, LI Jun-Yu, CHENG Xin-Lu. The Structural, Dielectric, Lattice Dynamical and Thermodynamic Properties of Zinc-Blende CdX (X= S, Se, Te) from First-Principles Analysis[J]. Chin. Phys. Lett., 2015, 32(03): 066301
[15] YU You, CHEN Chun-Lin, ZHAO Guo-Dong, ZHENG Xiao-Lin, ZHU Xing-Hua. Mechanical and Vibrational Properties of ZnS with Wurtzite Structure: A First-Principles Study[J]. Chin. Phys. Lett., 2014, 31(10): 066301
Viewed
Full text


Abstract