Chin. Phys. Lett.  2019, Vol. 36 Issue (6): 060501    DOI: 10.1088/0256-307X/36/6/060501
GENERAL |
A Three-Terminal Quantum Well Heat Engine with Heat Leakage
Ze-Bin Lin, Wei Li, Jing Fu, Yun-Yun Yang, Ji-Zhou He**
Department of Physics, Nanchang University, Nanchang 330031
Cite this article:   
Ze-Bin Lin, Wei Li, Jing Fu et al  2019 Chin. Phys. Lett. 36 060501
Download: PDF(997KB)   PDF(mobile)(1001KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We propose a model for a three-terminal quantum well heat engine with heat leakage. According to the Landauer formula, the expressions for the charge current, the heat current, the power output and the efficiency are derived in the linear-response regime. The curves of the power output and the efficiency versus the positions of energy levels and the bias voltage are plotted by numerical calculation. Moreover, we obtain the maximum power output and the corresponding efficiency, and analyze the influence of the heat leakage factor, the positions of energy levels and the bias voltage on these performance parameters.
Received: 03 January 2019      Published: 18 May 2019
PACS:  05.70.-a (Thermodynamics)  
  73.50.Lw (Thermoelectric effects)  
  73.63.Hs (Quantum wells)  
  85.80.Fi (Thermoelectric devices)  
Fund: Supported by the National Natural Science Foundation of China under Grant No 11365015.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/6/060501       OR      https://cpl.iphy.ac.cn/Y2019/V36/I6/060501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ze-Bin Lin
Wei Li
Jing Fu
Yun-Yun Yang
Ji-Zhou He
[1]Benenti G et al 2017 Phys. Rep. 694 1
[2]Sothmann B et al 2015 Nanotechnology 26 032001
[3]Thierschmann H et al 2015 Nat. Nanotechnol. 10 854
[4]Roche B et al 2015 Nat. Commun. 6 6738
[5]Josefsson M et al 2018 Nat. Nanotechnol. 13 920
[6]Su H et al 2015 Chin. Phys. Lett. 32 100501
[7]Su S et al 2016 Sci. Rep. 6 21425
[8]Edwards H L et al 1993 Appl. Phys. Lett. 63 1815
[9]Edwards H L et al 1995 Phys. Rev. B 52 5714
[10]Prance J R et al 2009 Phys. Rev. Lett. 102 146602
[11]Jordan A N et al 2013 Phys. Rev. B 87 075312
[12]Shi Z C et al 2017 Chin. Phys. Lett. 34 110501
[13]Kano S and Fujii M 2017 Nanotechnology 28 095403
[14]Sothmann B et al 2013 New J. Phys. 15 095021
[15]Choi Y and Jordan A N 2015 Physica E 74 465
[16]Van Den Broeck C 2005 Phys. Rev. Lett. 95 190602
Related articles from Frontiers Journals
[1] Lingxiao Wang, Yin Jiang, Lianyi He, and Kai Zhou. Continuous-Mixture Autoregressive Networks Learning the Kosterlitz–Thouless Transition[J]. Chin. Phys. Lett., 2022, 39(12): 060501
[2] Sizhuo Yu, Yuan Gao, Bin-Bin Chen, and Wei Li. Learning the Effective Spin Hamiltonian of a Quantum Magnet[J]. Chin. Phys. Lett., 2021, 38(9): 060501
[3] Ying Li and Jiaxin Li. Advection and Thermal Diode[J]. Chin. Phys. Lett., 2021, 38(3): 060501
[4] Yong Gao. Ellipsoidal Thermal Concentrator and Cloak with Transformation Media[J]. Chin. Phys. Lett., 2021, 38(2): 060501
[5] Rongqian Wang, Jincheng Lu, and Jian-Hua Jiang. Moderate-Temperature Near-Field Thermophotovoltaic Systems with Thin-Film InSb Cells[J]. Chin. Phys. Lett., 2021, 38(2): 060501
[6] Liu-Jun Xu and Ji-Ping Huang. Active Thermal Wave Cloak[J]. Chin. Phys. Lett., 2020, 37(12): 060501
[7] Yun-Yun Yang , Shuai Xu , and Ji-Zhou He. Three-Terminal Thermionic Heat Engine Based on Semiconductor Heterostructures[J]. Chin. Phys. Lett., 2020, 37(12): 060501
[8] Quan-Wen Hou, Jia-Chi Li , and Xiao-Peng Zhao . Isotropic Thermal Cloaks with Thermal Manipulation Function[J]. Chin. Phys. Lett., 2021, 38(1): 060501
[9] Liujun Xu and Jiping Huang. Negative Thermal Transport in Conduction and Advection[J]. Chin. Phys. Lett., 2020, 37(8): 060501
[10] Jia Li, Zhao-Liang Wang, Gui-Ce Yao. Reconstruction of Intrinsic Thermal Parameters of Methane Hydrate and Thermal Contact Resistance by Freestanding 3$\omega$ Method[J]. Chin. Phys. Lett., 2018, 35(7): 060501
[11] Run Hu, Jin-Yan Hu, Rui-Kang Wu, Bin Xie, Xing-Jian Yu, Xiao-Bing Luo. Examination of the Thermal Cloaking Effectiveness with Layered Engineering Materials[J]. Chin. Phys. Lett., 2016, 33(04): 060501
[12] RAO Zhong-Hao, LIU Xin-Jian, ZHANG Rui-Kai, LI Xiang, WEI Chang-Xing, WANG Hao-Dong, LI Yi-Min. A Comparative Study on the Self Diffusion of N-Octadecane with Crystal and Amorphous Structure by Molecular Dynamics Simulation[J]. Chin. Phys. Lett., 2014, 31(1): 060501
[13] ZHANG Yan-Chao, HE Ji-Zhou. Efficiency at Maximum Power of a Quantum Dot Heat Engine in an External Magnetic Field[J]. Chin. Phys. Lett., 2013, 30(1): 060501
[14] Azad A. Siddiqui**, Syed Muhammad Jawwad Riaz, M. Akbar . Foliation and the First Law of Black Hole Thermodynamics[J]. Chin. Phys. Lett., 2011, 28(5): 060501
[15] LI Wei, Q. A. Wang, A. Le Mehaute. Maximum Path Information and Fokker--Planck Equation[J]. Chin. Phys. Lett., 2008, 25(4): 060501
Viewed
Full text


Abstract