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Third-Order Nonlinear Optical Response near the Plasmon Resonance Band of
Cu2−𝑥Se Nanocrystals
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The third-order nonlinear optical properties of water-soluble Cu2−𝑥Se nanocrystals are studied in the near infrared
range of 700–980 nm using a femtosecond pulsed laser by the 𝑍-scan technique. It is observed that the nonlinear
optical response of Cu2−𝑥Se nanocrystals is sensitively dependent on the excitation wavelength and exhibits the
enhanced nonlinearity compared with other selenides such as ZnSe and CdSe. The W-shaped 𝑍-scan trace, a
mixture of the reversed saturated absorption and saturated absorption, is observed near the plasmon resonance
band of Cu2−𝑥Se nanocrystals, which is attributed to the state-filling of free carriers generated by copper vacancies
(self-doping effect) of Cu2−𝑥Se nanocrystals as well as the hot carrier thermal effect upon intense femtosecond
laser excitation. The large nonlinear optical response and tunable plasmonic band make Cu2−𝑥Se nanocrystals
promising materials for applications in ultra-fast all-optical switching devices as well as nonlinear nanosensors.
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Semiconductor nanostructures of transition metal
chalcogenides are known to exhibit a variety of fasci-
nating properties and show promising applications as
building blocks in electronics, optoelectronics, sensors,
bio-imaging, and so on.[1,2] Moreover, semiconductor
nanostructures of transition metal chalcogenides have
also exhibited attractive nonlinear optical properties
such as nonlinear absorption,[3] nonlinear refraction[4]

and optical limiting,[5,6] benefiting from the strong
confinement of excitons. More importantly, extensive
research efforts have been devoted recently to the cou-
pled hybrid nanostructures of semiconductor nanoma-
terials with noble metal nanocrystals such as Ag and
Au,[7−13] which have been demonstrated to possess
unique linear and nonlinear optical properties compa-
red with their individual counterparts.[8,9,11,14−21]

Recently, the heavily-doped semiconductor nano-
crystals of copper chalcogenides such as Cu2−𝑥S and
Cu2−𝑥Se have emerged to draw great attention since
they exhibit metallic behavior due to ‘self-doping’
by the existence of a large number of copper va-
cancies, and eventually a tunable plasmonic response
in the near infrared (IR) wavelength range which is
not easily accessed by noble metal nanocrystals.[22−29]

In 2011, Dorfs et al. reported detailed studies of
self-doping on the plasmonic properties of Cu2−𝑥Se
nanocrystals,[30] after successful preparation and plas-
monic property studies of Cu2−𝑥S.

[31,32] The silica
sol-gel glasses embedded with copper selenides have
also revealed both semiconductor-like absorption band
and especially the near-IR absorption of plasmon re-

sonance band which is associated with the band struc-
ture of Cu2−𝑥Se.

[33−36] To the best of our knowledge,
the third-order nonlinear optical response of copper
selenide has been rarely studied so far, though a se-
ries of selenides such as ZnSe, CdSe, PbSe have been
investigated extensively to show many interesting non-
linear optical properties.[3−6,37−39]

In this Letter, we report on a detailed expe-
rimental investigation of the nonlinear response of
Cu2−𝑥Se nanocrystals under femtosecond laser excita-
tion in the near-infrared regime (700–980 nm), by per-
forming the 𝑍-scan technique. The maximum values
of the nonlinear absorption coefficient and nonlinear
refractive index are estimated to be 7.38×10−9m/W
and 2.64×10−15m2/W, respectively. The free car-
riers generated by copper vacancy (self-doping effect)
of Cu2−𝑥Se nanocrystals as well as the hot carrier
thermal effect upon intense femtosecond laser excita-
tion has been discussed to attribute to the enhanced
third-order nonlinear response of Cu2−𝑥Se nanocry-
stals near its plasmon resonance band.

The nanocrystals can be synthesized using the sim-
ple and rapid assisted-microwave method.[40,41] Here
the powder Cu2−𝑥Se nanocrystals are prepared based
on the assisted-microwave method as follows: 0.397 g
CuCl2·2H2O, 0.201 g Na2SeO3, 0.467 g polyvinylpyr-
rolidone (PVP) and 0.249 g NaOH were placed into a
three-necked flask, and ethylene glycol (EG) of 60ml
was added. The mixed solution was magnetically stir-
red at room temperature to obtain the homogeneous
solution. Then the three-necked flask was transfer-
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red into the microwave system (300W) and heated at
180∘C for 1 h. To remove the excess PVP and ions,
the products were centrifuged and washed with dei-
onized water and ethanol three times, respectively.
The as-prepared products were then dried at room
temperature for further characterization. Figure 1(a)
shows the powder x-ray diffraction (XRD) patterns of
the Cu2−𝑥Se nanocrystals, in which the main phase
of Cu2−𝑥Se nanocrystals is seen to be established
(JCPDS 06-0680) and determined to be tetragonal.
Due to the exposure of Cu2−𝑥Se nanocrystals to air,
the three main peaks of (111), (220) and (311) slightly
shift to higher 2𝜃 angles, indicating a decrease in the
lattice parameters.[42] The peaks appearing at higher
2𝜃 angles (>60∘) are associated with the nonstoichi-
ometric copper-deficient Cu2−𝑥Se.

[42] The two peaks
marked with asterisks in Fig. 1(a) are associated with
Se residue in the as-prepared powder. The shapes
of the synthesized Cu2−𝑥Se nanocrystals are revea-
led to be hollow spheres as shown in the transmission
electron microscopy (TEM) micrograph of Fig. 1(b),
from which the averaged diameters of Cu2−𝑥Se hol-
low spherical nanocrystals are ∼200 nm, with the shell
thickness of ∼5 nm.
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Fig. 1. (a) The powder x-ray diffraction pattern of the
Cu2−𝑥Se nanocrystals in which the two peaks marked with
asterisks are associated with Se residue in the as-prepared
powder. (b) TEM micrograph of Cu2−𝑥Se nanocrystals.

The prepared powder is then dispersed in the dei-
onized water assisted by the ultrasonic wave-stirring.
Figure 2 shows the room temperature UV-VIS-NIR
absorbance spectra of Cu2−𝑥Se nanocrystals disper-
sed in water, which is characterized with a band-
gap-related, monotonically rising absorbance at wa-
velength below 800 nm and a broad absorbance peak
centered at ∼1050 nm associated with the plasmo-
nic feature of Cu2−𝑥Se nanocrystals, indicating that
the composition of copper is about 𝑥 = 0.15 for our
studied Cu2−𝑥Se nanocrystals, based on the calcu-
lated extinction spectrum of Cu2−𝑥Se nanocrystals
for different 𝑥 by Dorfs et al.[30,42−44] The band
gap 𝐸g of Cu2−𝑥Se nanocrystals can be evaluated
by the absorbance spectra based on the relation of
𝛼0 = 𝐴

√︀
ℎ𝜐 − 𝐸g (𝛼0 is the absorption coefficient), as

shown in the inset of Fig. 2, giving the bandgap energy
of ∼2.16 eV (571 nm). The water-dispersed sample is
then injected into a 1-mm-thick quartz cuvette, which
is mounted on a remotely controlled translation stage,
thus it can move along the 𝑍-axis. The 𝑍-scan me-
asurement is taken with a Ti:sapphire laser system

(Chameleon Ultra II, Coherent Inc.) which provides
150 fs pulse with repetition rate of 80MHz. The ex-
citation laser beam is focused onto the sample using
a lens with a focal length of 𝑓 = 100mm and passes
through a variable-diameter aperture which is placed
before a silicon photodiode. Attenuators are used to
control the intensity below the damage threshold. All
the 𝑍-scan results are normalized to the low-intensity-
excitation case to avoid the perturbation signal caused
by light scattering. The nonlinear absorption coeffi-
cient can be extracted from the open-aperture mea-
surements and the sign and magnitude of the nonli-
near refractive index can be determined by the closed-
aperture 𝑍-scan measurements.[45−48]
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Fig. 2. Absorption spectrum of Cu2−𝑥Se nanocrystals
taken in the visible (red dashed line) and near infrared
(black solid line) ranges, respectively. The direct bandgap
is extracted to be ∼2.16 eV.

To elucidate the nonlinear absorption behavior of
Cu2−𝑥Se nanocrystals, open-aperture 𝑍-scan measu-
rements have been first carried out in the wavelength
range of 700–980 nm at the same excitation intensity
of 0.25GW/cm2, as displayed in Fig. 3. It is seen
that the nonlinear absorption of Cu2−𝑥Se nanocrystals
exhibits quite complex behavior: it undergoes a trans-
formation from a valley-shaped two-photon absorption
in the range of 700–900 nm, and then aW-shaped com-
plex feature above 950 nm when the excitation pho-
ton energy approaches to the near resonance of plas-
mon band of Cu2−𝑥Se nanocrystals as seen in Fig. 2.
It is known that the nonlinear absorption is contri-
buted from different mechanisms such as two-photon
absorption, free carrier absorption and the excited
state absorption, depending on the excitation pho-
ton energy (wavelength) and pulse width.[39,46] These
different mechanisms can often involve and compete
with each other in the single 𝑍-scan measurement,
especially when the excitation photon energy is near
the resonant band. The competing saturation absorp-
tion and free carrier absorption can lead to the ob-
served W-shaped open-aperture 𝑍-scan trace, which
is a mixture of the reversed saturated absorption and
saturated absorption, as the broad absorption band
centered around 1050 nm is actually the plasmon re-
sonant band of Cu2−𝑥Se nanocrystals as previously
reported.[30,42−44] Photoexcitation at plasmon reso-
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nance band can induce a state-filling absorption blea-
ching effect caused by higher-order optical transition
oscillators, due to the self-doping effect in Cu2−𝑥Se
nanocrystals. When the plasmon resonance band be-
comes excited, the excited hot carriers have different
energies from that of the unexcited carrier. This cau-
ses a dynamic transition energy shift so that the plas-
mon resonance band absorption cannot further occur
in the original region. This leads to plasmon reso-
nance bleaching, as a consequence saturation absorp-
tion occurs at near resonant excitation of plasmon
band. Meanwhile, under the intense femtosecond la-
ser beam excitation, the imbalanced distribution of
thermalized and nonthermalized carriers can extend
energy levels to induce a large modulation of absorp-
tion cross-section and can contribute to the nonlinear
absorption, resulting in a thermal nature of the third-
order nonlinearity of plasmonic media as previously
demonstrated.[27,28] All these nonlinear optical pro-
cesses involved will compete with each other to con-
tribute to the complex nonlinear absorption and W-
shaped open-aperture 𝑍-scan traces near the plasmon
resonance of Cu2−𝑥Se nanocrystals. It is noted that
the W-shaped 𝑍-scan traces have also been observed
for the hybrid semiconductor exciton/noble metal na-
nocrystals when the excitation wavelength is near the
plasmon resonance band.[49,50]
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Fig. 3. Open-aperture 𝑍-scan traces of Cu2−𝑥Se nano-
crystals at different excitation wavelengths.

As for the typical valley-shaped two-photon ab-
sorption feature at below-bandgap excitation in the
range of 700–900 nm, the normalized 𝑍-scan traces
can be perfectly fitted with the simplified equation
as follows:[45,48]

𝑇ΔΨ(𝑥) = 1 − 2(𝑥2 + 3)∆Ψ0

(𝑥2 + 9)(𝑥2 + 1)
, (1)

where 𝑥 = 𝑧/𝑧0 is the sample’s coordinate according
to the focal point of the lens, and 𝑧0 = 𝜋𝜔2

0/𝜆 is the
Rayleigh range of the beam with 𝜔0 and 𝜆 being the la-
ser beam waist and wavelength of the excitation laser,
respectively. The phase change contributed from the
nonlinear absorption is ∆Ψ0 = 𝛽𝐼0𝐿eff/2, where 𝛽 de-
notes the third-order nonlinear absorption coefficient,
𝐼0 refers to the irradiance intensity at focus, 𝐿eff =
(1 − 𝑒−𝛼0𝐿)/𝛼0 is the effective sample thickness, with

𝐿 being the sample’S thickness which is 1mm, and
𝛼0 = 0.35mm−1 at wavelength of 770 nm. The imagi-
nary part of the third-order susceptibility Im(𝜒(3)) is
related to 𝛽 by the relation of Im(𝜒(3)) = 𝜆𝜀0𝑛

2
0𝑐𝛽/4𝜋,

where 𝑛0 is the linear refractive index, 𝜀0 and 𝑐 are
the permittivity of free space and velocity of light
in vacuum, respectively.[43] The extracted values of
Im(𝜒(3)) in the wavelength range of 700–900 nm are
of the order of 1.9–2.7 × 10−18 esu, as exhibited in
Fig. 4. Thus the nonlinear optical absorption coeffi-
cient values are evaluated to be of the order of 4.30–
7.38 × 10−9m/W.
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order susceptibility 𝜒(3) of Cu2−𝑥Se nanocrystals measu-
red using the 𝑍-scan technique.
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Fig. 5. (a) Closed-aperture 𝑍-scan traces of Cu2−𝑥Se na-
nocrystals excited at 770 nm with different incident inten-
sities. The solid lines are the best-fitting curves. (b) Phase
changes at different incident intensities extracted based on
the measured data presented in (a).

The typical closed-aperture 𝑍-scan traces taken
at different laser excitation intensities with the exci-
tation wavelength of 770 nm are shown in Fig. 5(a),
so that the phase distortion induced purely by laser
intensity-dependent refractive index can be deduced.
At low irradiance intensity excitation, the peak-to-
valley shape indicates that Cu2−𝑥Se nanocrystals pos-
sess a negative value of the nonlinear refractive index.
The closed-aperture 𝑍-scan traces can be well fitted
by[45,48]

𝑇ΔΦ(𝑥) = 1 +
4𝑥∆Φ0

(𝑥2 + 9)(𝑥2 + 1)
, (2)

where 𝑇MΦ(𝑥) is the normalized transmittance con-
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tributed from the nonlinear phase distortion, and
the phase change contributed from the nonlinear re-
fraction is ∆Φ0 = 𝑘𝛾𝐼0𝐿eff with 𝛾 being the non-
linear index, and 𝑘 = 2𝜋/𝜆 being the wave vec-
tor. Nonlinear phase changes ∆Φ0 under different
intensities are evaluated based on results presented
in Fig. 5(a) and displayed in Fig. 5(b) at low exci-
tation intensity levels (𝐼0 < 0.5GW/cm2). A clear
straight line for the plot of ∆Φ0 versus 𝐼0 indicates
that there are no other higher-order nonlinear pro-
cesses involved, and the nonlinear refraction is do-
minated by the bound-electronic transition induced
ordinary third-order nonlinear effect at low excita-
tion intensity.[39,49,50] The Kerr refractive index 𝛾 can
then be deduced to be 2.64×10−15m2/W from the
slope of this curve at low excitation intensities ba-
sed on 𝛾 =M Φ0/𝑘𝐼0𝐿eff . Therefore, the real part
of the third-order nonlinear susceptibility Re(𝜒(3)) is
calculated to be ∼4.45× 10−17 esu, based on the rela-
tion of Re(𝜒(3))(esu) = 2𝑛2

0𝜀0𝑐𝛾.
[43] A series of closed-

aperture 𝑍-scan traces at different wavelengths and
low irradiance intensity excitation are also performed,
with the extracted third-order nonlinear susceptibility
Re(𝜒(3)) at different wavelengths shown in Fig. 4.

However, when the excitation intensity increa-
ses above 0.6GW/cm2, the 𝑍-scan traces at below-
bandgap excitation of 770 nm starts to deviate from
the symmetric peak-to-valley shape as shown in Fig. 6,
with a peak-enhanced and valley-suppressed shape
of 𝑍-scan trace gradually showing up, implying the
contribution from higher-order nonlinearity involving
free-carrier excitation process. These asymmetrical
𝑍-scan traces are typical combinations of the third-
and fifth-order nonlinear responses, which can vary
with excitation intensity and wavelength as usually
observed in noble nanocrystals.[53,54] Here the bound-
electronic nonlinearity has a third-order dependence
on the incident irradiance, whereas the free-carrier
nonlinearity has fifth-order dependence at high irra-
diance levels.[39]

It is known that the enhanced free-carrier pro-
cess can strengthen the quantum confinement effect

in plasmonic nanocrystals,[28] and further make con-
siderable contribution to the nonlinear refractive re-
sponse of self-doped Cu2−𝑥Se nanocrystals, in which
the free carriers are the holes in the valence band ge-
nerated by copper vacancies.[22−29] Under the intense
femtosecond laser excitation, the imbalanced distribu-
tion of thermalized and nonthermalized carriers can
strongly modulate the energy distribution of hot car-
riers and absorption cross-section up to 10 times lar-
ger than that obtained in Au nanocrystals under the
same optical fluence,[27,28] leading to the magnifica-
tion of optical nonlinearity and higher-order nonlinear
absorption response, though the density of free carrier
in self-doped Cu2−𝑥Se nanocrystals is relatively lower
compared with the nobal metal nanocrystals. Thus
the enhanced nonlinear optical coefficients of Cu2−𝑥Se
nanocrystals compared with other selenides such as
ZnSe and CdSe[37,38] as listed in Table 1 are mainly
associated with their unique properties whose optical
nonlinearity is enhanced by the high-density free car-
riers at plasmon band excitation. The enhanced op-
tical nonlinearity of Cu2−𝑥Se nanocrystals over other
selenides, in addition to the great capability to tune
the plasmonic resonance by controlling the free-carrier
density, makes the Cu2−𝑥Se nanocrystals promising
materials for the application of ultra-fast all-optical
switching devices as well as nonlinear nanosensors.
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Fig. 6. Closed-aperture 𝑍-scan traces excited at higher
incident intensities at 770 nm.

Table 1. Nonlinear refractive index of different materials.

Material Wavelength (nm) Duration Nonlinear refractive index (cm2/W) Reference

CdSe quantum dot 520 225 fs (5.0±1.5)×10−13 Ref. [37]
CdSe quantum dot 620 225 fs (8.2±2.4)×10−14 Ref. [37]

CdSe/ZnS core shell quantum dots 580 225 fs (4.1±1.2 )×10−13 Ref. [37]
CdSe/ZnS core shell quantum dots 620 225 fs (2.5±0.7)×10−13 Ref. [37]

ZnSe quantum dots 532 10 ns 2.46×10−13 Ref. [38]
Cu2−𝑥Se nanocrystals 770 150 fs 2.64×10−11 present work

In conclusion, the 𝑍-scan measurements have been
performed for Cu2−𝑥Se nanocrystals. Under below-
bandgap excitation, the third-order nonlinear re-
sponse of Cu2−𝑥Se nanocrystals is observed to be
greatly enhanced compared with the other seleni-
des owing to the two-photon absorption contribution.
However, a mixed feature of the reversed saturated
absorption and saturated absorption exhibiting W-

shaped 𝑍-scan trace is observed when the excitation
photon energy is tuned to be near the plasmon reso-
nance band of Cu2−𝑥Se nanocrystals, which is attribu-
ted to the state-filling of free carriers due to self-doping
effect in Cu2−𝑥Se nanocrystals as well as the hot car-
rier thermal effect upon intense femtosecond laser ex-
citation. The enhanced nonlinear optical response and
unique plasmonic band suggest that Cu2−𝑥Se nano-
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crystals are attractive for the promising application
in the novel nonlinear optical devices.
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