We propose a real-space Gutzwiller variational approach and apply it to a system of repulsively interacting ultracold fermions with spin-1/2 trapped in an optical lattice with a harmonic confinement. Using the real-space Gutzwiller variational approach, we find that in a system with balanced spin-mixtures on a square lattice, antiferromagnetism either appears in a checkerboard pattern or forms a ring, and the antiferromagnetic order is stable in the regions where the particle density is close to one, which is consistent with the recent results obtained by the real-space dynamical mean-field theory approach. We also investigate the imbalanced case and find that the antiferromagnetic order is suppressed there.
We propose a real-space Gutzwiller variational approach and apply it to a system of repulsively interacting ultracold fermions with spin-1/2 trapped in an optical lattice with a harmonic confinement. Using the real-space Gutzwiller variational approach, we find that in a system with balanced spin-mixtures on a square lattice, antiferromagnetism either appears in a checkerboard pattern or forms a ring, and the antiferromagnetic order is stable in the regions where the particle density is close to one, which is consistent with the recent results obtained by the real-space dynamical mean-field theory approach. We also investigate the imbalanced case and find that the antiferromagnetic order is suppressed there.
QI Jian-Qing;WANG Lei;DAI Xi. Antiferromagnetism of Repulsively Interacting Fermions in a Harmonic Trap[J]. 中国物理快报, 2010, 27(8): 83102-083102.
QI Jian-Qing, WANG Lei, DAI Xi. Antiferromagnetism of Repulsively Interacting Fermions in a Harmonic Trap. Chin. Phys. Lett., 2010, 27(8): 83102-083102.
[1] For a review, see Nature 2002 416 205 [2] Anderson M H et al 1995 Science 269 198 [3] Bloch I 2005 Nature Phys. 1 23 [4] Gutzwiller M C 1963 Phys. Rev. Lett. 10 159 Gutzwiller M C 1964 Phys. Rev. A 134 923 Gutzwiller M C 1965 Phys. Rev. A 137 1726 [5] Gottwald T et al 2009 Phys. Rev. A 80 033603 [6] Andersen B M et al 2007 Phys. Rev. A 76 041602(R) [7] Wunsch B et al 2010 Phys. Rev. A 81 013616 [8] Snoek M et al 2008 New J. Phys. 10 093008 [9] Brinkman W F and Rice T M 1970 Phys. Rev. B 2 4302 [10] Zhang F C et al 1988 Supercond. Sci. Technol. 1 36 [11] Vollhardt D 1984 Rev. Mod. Phys. 56 99 [12] Wang Q H et al 2006 Phys. Rev. B 73 092507 [13] Han J H et al 2001 Int. J. Mod. Phys. B 15 1117 [14] Deng X Y et al 2009 Phys. Rev. B 79 075114 [15] Ogama T, Kanda K and Matsubara T 1975 Prog. Theor. Phys. 53 614 [16] Metzner W and Vollhardt D 1987 Phys. Rev. Lett. 59 121 Gebhard F and Vollhardt D 1987 Phys. Rev. Lett. 59 1472 Gebhard F and Vollhardt D 1988 Phys. Rev. B 38 6911 [17] Metzner W and Vollhardt D 1989 Phys. Rev. Lett. 62 324 Metzner W 1989 Z. Phys. B: Condens. Matter 77 253 [18] Stenger J et al 1999 Phys. Rev. Lett. 82 2422 [19] Fölling S et al 2006 Phys. Rev. Lett. 97 060403