Evidence for a New Extended Solid of Nitrogen *
Li Lei1,2** , Qi-Qi Tang1 , Feng Zhang1 , Shan Liu1 , Bin-Bin Wu1 , Chun-Yin Zhou3
1 Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China2 Key Laboratory of High Energy Density Physics and Technology (Ministry of Education), Sichuan University, Chengdu 610064, China3 Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
Abstract :A new extended solid nitrogen, referred to as post-layered-polymeric nitrogen (PLP-N, or Panda-N), was observed by further heating the layered-polymeric nitrogen (LP-N) to above 2300 K at 161 GPa. The new phase is found to be very optically transparent and exhibits ultra-large $d$-spacings ranging from 2.8 to 4.9 Å at 172 GPa, suggesting a lower-symmetry large-unit-cell 2D chain-like or 0D cluster-type structure with wide bandgap. However, the observed x-ray diffraction pattern and Raman scattering data cannot match any predicted structures in the published literature. This finding further complicates the phase diagram of nitrogen and also highlights the path dependence of the high-pressure dissociative transition in nitrogen. In addition, the phase transition from cubic gauche nitrogen (cg-N) to LP-N is observed at 157 GPa and 2000 K.
收稿日期: 2020-02-14
出版日期: 2020-05-26
PACS:
81.30.-t
(Phase diagrams and microstructures developed by solidification and solid-solid phase transformations)
78.30.-j
(Infrared and Raman spectra)
61.50.Ks
(Crystallographic aspects of phase transformations; pressure effects)
[1] Silvera I F and Wijngaarden R J 1981 Phys. Rev. Lett. 47 39
[2] Loubeyre P, Occelli F and Dumas P 2020 Nature 577 631
[3] Ji C et al 2019 Nature 573 558
[4] Mcmahan A K and Lesar R 1985 Phys. Rev. Lett. 54 1929
[5] Mailhiot C et al 1992 Phys. Rev. B 46 14419
[6] Eremets M I et al 2004 Nat. Mater. 3 558
[7] Jiang S Q et al 2018 Nat. Commun. 9 2624
[8] Yakub L N 2016 Low Temp. Phys. 42 1
[9] Streib W E et al 1962 J. Chem. Phys. 37 2962
[10] Schiferl D et al 1983 Acta Crystallogr. C 39 1151
[11] Olijnyk H 1990 J. Chem. Phys. 93 8968
[12] Cromer D T et al 1981 Acta Crystallogr. B 37 8
[13] Stinton G W, Loa I, Lundegaard L F and McMahon I M 2009 J. Chem. Phys. 131 104511
[14] Hanfland M, Lorenzen M, Wassilew-Reul C and Zontone F 1998 Rev. High Press. Sci. Technol. 7 787
[15] Mills R L, Olinger B and Cromer D T 1986 J. Chem. Phys. 84 2837
[16] Gregoryanz E, Sanloup C, Bini R, Kreutz J, Jodl J H, Somayazulu M, Mao H K and Hemley R J 2006 J. Chem. Phys. 124 116102
[17] Gregoryanz E, Goncharov A F, Sanloup C, Somayazulu M, Mao H K and Hemley R J 2007 J. Chem. Phys. 126 184505
[18] Gregoryanz E, Goncharov A F, Hemley R J and Mao K H 2001 Phys. Rev. B 64 052103
[19] Pu M F, Liu S, Lei L, Zhang F, Feng L H, Qi L and Zhang L L 2019 Solid State Commun. 298 113645
[20] Frost M, Howie R T, Dalladay-Simpson P, Goncharov A F and Gregoryanz E 2016 Phys. Rev. B 93 024113
[21] Liu S, Pu M F, Tang Q Q, Zhang F, Wu B B and Lei L 2020 Solid State Commun. 310 113843
[22] Gregoryanz E et al 2002 Phys. Rev. B 66 224108
[23] Turnbull R et al 2018 Nat. Commun. 9 4717
[24] Lipp M J, Klepeis J P, Baer B J, Cynn H, Evans W J, Iota V and Yoo C S 2007 Phys. Rev. B 76 014113
[25] Eremets M I, Gavriliuk A G and Trojan I A 2007 Appl. Phys. Lett. 90 171904
[26] Tomasino D, Kim M, Smith J and Yoo S C 2014 Phys. Rev. Lett. 113 205502
[27] Laniel D, Geneste G, Weck G, Mezouar M and Loubeyre P 2019 Phys. Rev. Lett. 122 066001
[28] Yoo S C, Tomasino D, Smith J and Kim M 2017 AIP Conf. Proc. 1793 130007
[29] Adeleke A A, Greschner M J, Majumdar A, Wan B, Liu H Y, Li Z P, Gou H Y and Yao Y S 2017 Phys. Rev. B 96 224104
[30] Ma Y M, Oganov A R, Li Z W, Xie Y and Kotakoski J 2009 Phys. Rev. Lett. 102 065501
[31] Hirshberg B, Gerber R and Krylov A 2014 Nat. Chem. 6 52
[32] Yao Y S, Tse J S and Tanaka K 2008 Phys. Rev. B 77 052103
[33] Wang X L et al 2012 Phys. Rev. Lett. 109 175502
[34] Pickard C J and Needs R J 2009 Phys. Rev. Lett. 102 125702
[35] Yuichi A and Kawamura H 2006 J. Appl. Phys. 100 043516
[36] Ma Y M et al 2009 Nature 458 182
[37] Eremets I M and Troyan A I 2011 Nat. Mater. 10 927
[38] Eremets I M, Hemley J R, Mao H K and Gregoryanz E 2001 Nature 411 170
[1]
. [J]. 中国物理快报, 2017, 34(10): 108101-.
[2]
. [J]. 中国物理快报, 2015, 32(07): 76401-076401.
[3]
. [J]. 中国物理快报, 2012, 29(8): 88104-088104.
[4]
CAI Ying-Xiang;XU Rui. First-Principles Study of the γ Angle Deformation Path in the Wurtzite-to-Rocksalt Phase Transition in Aluminum Nitride [J]. 中国物理快报, 2010, 27(9): 96402-096402.
[5]
LEI Ming-Kai;WANG Xing-Jun. Thermodynamical Phase Equilibrium of Iron Nitrides at Low Temperatures [J]. 中国物理快报, 2002, 19(11): 1721-1723.
[6]
ZHANG Tie-chen;YU San;LI Dong-mei;GUO Wei-li;GAO Chun-xiao;ZOU Guang-tian. Wurtzite Boron Nitride Crystal Growth in the Region of Cubic Boron Nitride Crystal Synthesizing [J]. 中国物理快报, 1998, 15(1): 70-71.
[7]
TAN Qi. Ordering and Reordering of Nanophase FeAl Intermetallics Synthesized by Mechanical Alloying [J]. 中国物理快报, 1996, 13(11): 851-854.
[8]
YAO Yushu;JIN Changqing;WU Bingqing;WANG Wenkui;ZHAO Zhongxian. Formation of Superconducting Phases in Electron-Doped Nd1.85 Ce0.15 CuO4-y [J]. 中国物理快报, 1993, 10(1): 53-56.
[9]
HAN Lijun*;JIANG Xingliu. Transformation of Graphite to Diamond by Bombardment of Intense Pulsed Electron Beams [J]. 中国物理快报, 1992, 9(4): 194-197.