Chin. Phys. Lett.  2023, Vol. 40 Issue (1): 017501    DOI: 10.1088/0256-307X/40/1/017501
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Strain-Enabled Control of Chiral Magnetic Structures in MnSeTe Monolayer
Zhiwen Wang1,2, Jinghua Liang2, and Hongxin Yang1,2*
1National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
2Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
Cite this article:   
Zhiwen Wang, Jinghua Liang, and Hongxin Yang 2023 Chin. Phys. Lett. 40 017501
Download: PDF(10377KB)   PDF(mobile)(11252KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Chiral magnetic states are promising for future spintronic applications. Recent progress of chiral spin textures in two-dimensional magnets, such as chiral domain walls, skyrmions, and bimerons, have been drawing extensive attention. Here, via first-principles calculations, we show that biaxial strain can effectively manipulate the magnetic parameters of the Janus MnSeTe monolayer. Interestingly, we find that both the magnitude and the sign of the magnetic constants of the Heisenberg exchange coupling, Dzyaloshinskii–Moriya interaction and magnetocrystalline anisotropy can be tuned by strain. Moreover, using micromagnetic simulations, we obtain the distinct phase diagram of chiral spin texture under different strains. Especially, we demonstrate that abundant chiral magnetic structures including ferromagnetic skyrmion, skyrmionium, bimeron, and antiferromagnetic spin spiral can be induced in the MnSeTe monolayer. We also discuss the effect of temperature on these magnetic structures. The findings highlight the Janus MnSeTe monolayer as a good candidate for spintronic nanodevices.
Received: 28 September 2022      Editors' Suggestion Published: 21 December 2022
PACS:  75.10.Hk (Classical spin models)  
  75.30.Gw (Magnetic anisotropy)  
  75.70.Rf (Surface magnetism)  
  75.78.Cd (Micromagnetic simulations ?)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/1/017501       OR      https://cpl.iphy.ac.cn/Y2023/V40/I1/017501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zhiwen Wang
Jinghua Liang
and Hongxin Yang
[1] Mühlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R, and Böni P 2009 Science 323 915
[2] Yu X Z, Kanazawa N, Onose Y, Kimoto K, Zhang W Z, Ishiwata S, Matsui Y, and Tokura Y 2011 Nat. Mater. 10 106
[3] Ryu K S, Thomas L, Yang S H, and Parkin S 2013 Nat. Nanotechnol. 8 527
[4] Fert A, Cros V, and Sampaio J 2013 Nat. Nanotechnol. 8 152
[5] Shen L, Li X, Xia J, Qiu L, Zhang X, Tretiakov O A, Ezawa M, and Zhou Y 2020 Phys. Rev. B 102 104427
[6] Göbel B, Mook A, Henk J, Mertig I, and Tretiakov O A 2019 Phys. Rev. B 99 060407(R)
[7] Nagaosa N and Tokura Y 2013 Nat. Nanotech. 8 899
[8] Upadhyaya P, Yu G, Amiri P K, and Wang K 2015 Phys. Rev. B 92 134411
[9]Schott M, Bernand-Mantel A, Ranno L, Pizzini S, Vogel J, Béa H, Baraduc C, Auffret S, Gaudin G, and Givord D 2017 Nano Lett. 17 3006
[10] Yu X, Morikawa D, Nakajima K, Shibata K, Kanazawa N, Arima T, Nagaosa N, and Tokura Y 2020 Sci. Adv. 6 eaaz9744
[11] Ba Y, Zhuang S, Zhang Y, Wang Y, Gao Y, Zhou H, Chen M, Sun W, Liu Q, Chai G, Ma J, Zhang Y, Tian H, Du H, Jiang W, Nan C, Hu J, and Zhao Y 2021 Nat. Commun. 12 322
[12] Wei W S, He Z D, Qu Z, and Du H F 2021 Rare Met. 40 3076
[13] Zheng F S, Li H, Wang S S, Song D S, Jin C M, Wei W S, Kovács A, Zang J D, Tian M L, Zhang Y H, Du H F, and Dunin-Borkowski R E 2017 Phys. Rev. Lett. 119 197205
[14] Neubauer A, Pfleiderer C, Binz B, Rosch A, Ritz R, Niklowitz P G, and Böni P 2009 Phys. Rev. Lett. 102 186602
[15] Luchaire C M, Moutafis C, Reyren N, Sampaio J, Vaz C A F, Van Horne N, Bouzehouane K, Garcia K, Deranlot C, Warnicke P, Wohlhüter P, George J M, Weigand M, Raabe J, Cros V, and Fert A 2016 Nat. Nanotechnol. 11 444
[16] Boulle O, Vogel J, Yang H, Pizzini S, de Chaves D S, Locatelli A, Mentes T O, Sala A, Buda-Prejbeanu L D, Klein O, Belmeguenai M, Stashkevich Y R A, Chérif S M, Aballe L, Foerster M, Chshiev M, Auffret S, Miron I M, and Gaudin G 2016 Nat. Nanotechnol. 11 449
[17] Fert A, Reyren N, and Cros V 2017 Nat. Rev. Mater. 2 17031
[18] Huang B V, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P, and Xu X 2017 Nature 546 270
[19] Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J, and Zhang X 2017 Nature 546 265
[20] Deng Y, Yu Y, Song Y, Zhang J, Wang N Z, Sun Z, Yi Y, Wu Y Z, Wu S, Zhu J, Wang J, Chen X H, and Zhang Y 2018 Nature 563 94
[21] Han M G, Garlow J A, Liu Y, Zhang H, Li J, DiMarzio D, Knight M W, Petrovic C, Jariwala D, and Zhu Y 2019 Nano Lett. 19 7859
[22] Ding B, Li Z, Xu G, Li H, Hou Z, Liu E, Xi X, Xu F, Yao Y, and Wang W 2020 Nano Lett. 20 868
[23] Wu Y, Zhang S, Zhang J, Wang W, Zhu Y L, Hu J, Wong K, Fang C, Wan C, Han X et al. 2020 Nat. Commun. 11 3860
[24] Xu C, Feng J, Prokhorenko S, Nahas Y, Xiang H, and Bellaiche L 2020 Phys. Rev. B 101 060404(R)
[25] Zhang Y, Xu C, Chen P, Nahas Y, Prokhorenko S, and Bellaiche L 2020 Phys. Rev. B 102 241107(R)
[26] Liang J H, Wang W W, Du H F, Hallal A, Garcia K, Chshiev M, Fert A, and Yang H X 2020 Phys. Rev. B 101 184401
[27] Cui Q R, Liang J H, Shao Z J, Cui P, and Yang H X 2020 Phys. Rev. B 102 094425
[28] Yang S, Peng R, Jiang T, Liu Y, Feng L, Wang J, Chen L, Li X, and Nan C 2014 Adv. Mater. 26 7091
[29] Kum H S, Lee H, Kim S, Lindemann S, Kong W, Qiao K, Chen P, Irwin J, Lee J H, Xie S, Subramanian S, Shim J, Bae S, Choi C, Ranno L, Seo S, Lee S, Bauer J, Li H, Lee K, Robinson J A, Ross C A, Schlom D G, Rzchowski M S, Eom C, and Kim J 2020 Nature 578 75
[30] Caretta L, Rosenberg E, Büttner F, Fakhrul T, Gargiani P, Valvidares M, Chen Z, Reddy P, Muller D A, Ross C A, and Beach G S D 2020 Nat. Commun. 11 1090
[31] Ren Y, Li Q, Wan W, Liu Y, and Ge Y F 2020 Phys. Rev. B 101 134421
[32] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[33] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[34] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[35] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[36] Perdew J P, Burke K, and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[37] Sui X, Hu T, Wang J, Gu B L, Duan W, and Miao M S 2017 Phys. Rev. B 96 041410(R)
[38]See Supplemental Material for (1) the calculations of Heisenberg exchange parameters $J$ and (2) the calculations of DMI $d$.
[39]Wang Z, Liang J, Cui Q, Ren W, and Yang H 2021 J. Magn. Magn. Mater. 535 168068
[40] Bruno P 1989 Phys. Rev. B 39 865
[41] Goodenough J B 1955 Phys. Rev. 100 564
[42] Kanamori J 1959 J. Phys. Chem. Solids 10 87
[43] Anderson P W 1959 Phys. Rev. 115 2
[44] Yang H X, Thiaville A, Rohart S, Fert A, and Chshiev M 2015 Phys. Rev. Lett. 115 267210
[45] Fert A and Levy P M 1980 Phys. Rev. Lett. 44 1538
Related articles from Frontiers Journals
[1] Guangmeng He, Huimin Zhang, Jinyang Ni, Boyu Liu, Changsong Xu, and Hongjun Xiang. Microscopic Magnetic Origin of Rhombohedral Distortion in NiO[J]. Chin. Phys. Lett., 2022, 39(6): 017501
[2] Dan Wei, Zhibin Chen, Hui Yang, Yongjun Cao, Chuan Liu. Origin of Anisotropy in Gadolinium Crystal Using a New Spin Hamiltonian[J]. Chin. Phys. Lett., 2020, 37(5): 017501
[3] Ren-Gui Zhu. Classical Ground State Spin Ordering of the Antiferromagnetic $J_1$–$J_2$ Model[J]. Chin. Phys. Lett., 2019, 36(6): 017501
[4] Jing Chen, Hai-Jun Liao, Hai-Dong Xie, Xing-Jie Han, Rui-Zhen Huang, Song Cheng, Zhong-Chao Wei, Zhi-Yuan Xie, Tao Xiang. Phase Transition of the q-State Clock Model: Duality and Tensor Renormalization[J]. Chin. Phys. Lett., 2017, 34(5): 017501
[5] Dong-Yi Wang, Cheng Tan, Kevin Huang, Lei Shu. The Complex Magnetism in the Breathing Pyrochlore LiIn(Cr$_{1-x}$Rh$_x$)$_4$O$_8$[J]. Chin. Phys. Lett., 2016, 33(12): 017501
[6] WANG Shun, XIE Zhi-Yuan, CHEN Jing, Bruce Normand, XIANG Tao. Phase Transitions of Ferromagnetic Potts Models on the Simple Cubic Lattice[J]. Chin. Phys. Lett., 2014, 31(07): 017501
[7] QIN Ming-Pu, CHEN Jing, CHEN Qiao-Ni, XIE Zhi-Yuan, KONG Xin, ZHAO Hui-Hai, Bruce Normand, XIANG Tao . Partial Order in Potts Models on the Generalized Decorated Square Lattice[J]. Chin. Phys. Lett., 2013, 30(7): 017501
[8] ZHU Ren-Gui** . Frustrated Ferromagnetic Spin Chain near the Transition Point[J]. Chin. Phys. Lett., 2011, 28(9): 017501
[9] DENG Ming. The Soliton Solutions of A (2+1)-Dimensional Integrable Equation of Classical Spin System[J]. Chin. Phys. Lett., 2009, 26(12): 017501
[10] LEI Xiao-Wei, ZHAO Xiao-Yu. Dynamic Simulation of Kosterlitz-Thouless Transition in Two-Dimensional Fully Frustrated XY Model[J]. Chin. Phys. Lett., 2009, 26(1): 017501
[11] R. Masrour, M. Hamedoun, A. Benyoussef, A. Hourmatallah, K. Bouslykhane, N. Benzakour. Effect of Co-Substitution on Magnetic Properties in Spinels GeNi2O4 Systems[J]. Chin. Phys. Lett., 2008, 25(11): 017501
[12] LU Chang-Hong, SHI Qing-Fan, YANG Lei, SUN Gang. Air-Driven Segregation in Binary Granular Mixtures with Same Size but Different Densities[J]. Chin. Phys. Lett., 2008, 25(7): 017501
[13] DAI Jun, HE Da-Ren. Phase Transition of a Distance-Dependent Ising Model on the Barabasi--Albert Network[J]. Chin. Phys. Lett., 2007, 24(12): 017501
[14] M. Hamedoun, R. Masrour, K. Bouslykhane, A. Hourmatallah, N. Benzakour, A. Filali. Zn Doping Effect on Magnetic Properties of ZnxCd1-xCr2S4 Systems by High-Temperature Series Expansions[J]. Chin. Phys. Lett., 2007, 24(7): 017501
[15] SHI Qing-Fan, SUN Gang, HOU Mei-Ying, LU Kun-Quan. Segregation in Vertically Vibrated Binary Granular Mixtures with Same Size[J]. Chin. Phys. Lett., 2006, 23(11): 017501
Viewed
Full text


Abstract