Chin. Phys. Lett.  2023, Vol. 40 Issue (1): 017402    DOI: 10.1088/0256-307X/40/1/017402
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Theoretical Prediction of Superconductivity in Boron Kagome Monolayer: $M$B$_{3}$ ($M$ = Be, Ca, Sr) and the Hydrogenated CaB$_{3}$
Liu Yang1, Ya-Ping Li1, Hao-Dong Liu1, Na Jiao1, Mei-Yan Ni1, Hong-Yan Lu1*, Ping Zhang1,2*, and C. S. Ting3
1School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China
2Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
3Texas Center for Superconductivity and Department of Physics, University of Houston, Houston, Texas 77204, USA
Cite this article:   
Liu Yang, Ya-Ping Li, Hao-Dong Liu et al  2023 Chin. Phys. Lett. 40 017402
Download: PDF(12645KB)   PDF(mobile)(14099KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Using first-principles calculations, we predict a new type of two-dimensional (2D) boride $M$B$_{3}$ ($M$ = Be, Ca, Sr), constituted by boron kagome monolayer and the metal atoms adsorbed above the center of the boron hexagons. The band structures show that the three $M$B$_{3}$ compounds are metallic, thus the possible phonon-mediated superconductivity is explored. Based on the Eliashberg equation, for BeB$_{3}$, CaB$_{3}$, and SrB$_{3}$, the calculated electron–phonon coupling constants $\lambda $ are 0.46, 1.09, and 1.33, and the corresponding superconducting transition temperatures $T_{\rm c}$ are 3.2, 22.4, and 20.9 K, respectively. To explore superconductivity with higher transition temperature, hydrogenation and charge doping are further considered. The hydrogenated CaB$_{3}$, i.e., HCaB$_{3}$, is stable, with the enhanced $\lambda $ of 1.39 and a higher $T_{\rm c}$ of 39.3 K. Moreover, with further hole doping at the concentration of $5.8\times 10^{11}$ hole/cm$^{2}$, the $T_{\rm c}$ of HCaB$_{3}$ can be further increased to 44.2 K, exceeding the McMillan limit. The predicted $M$B$_{3}$ and HCaB$_{3}$ provide new platforms for investigating 2D superconductivity in boron kagome lattice since superconductivity based on monolayer boron kagome lattice has not been studied before.
Received: 23 November 2022      Published: 03 January 2023
PACS:  74.78.-w (Superconducting films and low-dimensional structures)  
  74.25.-q (Properties of superconductors)  
  74.20.Pq (Electronic structure calculations)  
  74.25.Kc (Phonons)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/1/017402       OR      https://cpl.iphy.ac.cn/Y2023/V40/I1/017402
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Liu Yang
Ya-Ping Li
Hao-Dong Liu
Na Jiao
Mei-Yan Ni
Hong-Yan Lu
Ping Zhang
and C. S. Ting
[1] Syôzi I 1951 Prog. Theor. Phys. 6 306
[2] Wang W S, Li Z Z, Xiang Y Y, and Wang Q H 2013 Phys. Rev. B 87 115135
[3] Mizoguchi T and Hatsugai Y 2020 Phys. Rev. B 101 235125
[4] Yamada M G, Soejima T, Tsuji N, Hirai D, Dincă M, and Aoki H 2016 Phys. Rev. B 94 081102(R)
[5] Ezawa M 2018 Phys. Rev. Lett. 120 026801
[6] Xue H R, Yang Y H, Gao F, Chong Y D, and Zhang B L 2019 Nat. Mater. 18 108
[7] Ye L D, Kang M G, Liu J W, von Cube F, Wicker C R, Suzuki T, Jozwiak C, Bostwick A, Rotenberg E, Bell D C, Fu L, Comin R, and Checkelsky J G 2018 Nature 555 638
[8] Mazin I I, Jeschke H O, Lechermann F, Lee H, Fink M, Thomale R, and Valenti R 2014 Nat. Commun. 5 4261
[9] Liu E, Sun Y, Kumar N, Muechler L, Sun A, Jiao L, Yang S Y, Liu D F, Liang A J, Xu Q, Kroder J, Süß V, Borrmann H, Shekhar C, Wang Z S, Xi C Y, Wang W H, Schnelle W, Wirth S, Chen Y L, Goennenwei S T B, and Felser C 2018 Nat. Phys. 14 1125
[10] Imai T, Nytko E A, Bartlett B M, Shores M P, and Nocera D G 2008 Phys. Rev. Lett. 100 077203
[11] Huang L and Lu H Y 2020 Phys. Rev. B 102 155140
[12] Nikolaev S A, Mazurenko V V, Tsirlin A A, and Mazurenko V G 2016 Phys. Rev. B 94 144412
[13] Bauer B, Cincio L, Keller B P, Dolfi M, Vidal G, Trebst S, and Ludwig A W W 2014 Nat. Commun. 5 5137
[14]Wu T and Guo J 2019 IEEE Electron Device Lett. 40 1973
[15] Chisnell R, Helton J S, Freedman D E, Singh D K, Bewley R I, Nocera D G, and Lee Y S 2015 Phys. Rev. Lett. 115 147201
[16]Song L L, Zhang L Z, Guan Y R, Lu J C, Yan C X, and Cai J M 2019 Chin. Phys. B 28 037101
[17] Baidya S, Mallik A V, Bhattacharjee S, and Saha-Dasgupta T 2020 Phys. Rev. Lett. 125 026401
[18] Ko W H, Lee P A, and Wen X G 2009 Phys. Rev. B 79 214502
[19] Yu S L and Li J X 2012 Phys. Rev. B 85 144402
[20] Pyon S, Kudo K, Matsumura J, Ishii H, Matsuo G, Nohara M, Hojo H, Oka K, Azuma M, Garlea V O, Kodama K, and Shamoto S 2014 J. Phys. Soc. Jpn. 83 093706
[21] Lu H Y, Wang N N, Geng L, Chen S, Yang Y, Lu W J, Wang W S, and Sun J 2015 Europhys. Lett. 110 17003
[22] Philip S S, Yang J, Louca D, Rosa P F S, Thompson J D, and Page K L 2021 Phys. Rev. B 104 104503
[23] Li S, Zeng B, Wan X G, Tao J, Han F, Yang H, Wang Z H, and Wen H H 2011 Phys. Rev. B 84 214527
[24] Li B X, Li S, and Wen H H 2016 Phys. Rev. B 94 094523
[25] Mielke C, I I I, Qin Y, Yin J X, Nakamura H, Das D, Guo K, Khasanov R, Chang J, Wang Z Q, Jia S, Nakatsuji S, Amato A, Luetkens H, Xu G, Hasan M Z, and Guguchia Z 2021 Phys. Rev. Mater. 5 034803
[26] Ortiz B R, Gomes L C, Morey J R, Winiarski M, Bordelon M, Mangum J S, Oswald I W H, Rodriguez-Rivera J A, Neilson J R, Wilson S D, Ertekin E, McQueen T M, and Toberer E S 2019 Phys. Rev. Mater. 3 094407
[27] Tan H X, Liu Y Z, Wang Z Q, and Yan B H 2021 Phys. Rev. Lett. 127 046401
[28] Jiang Y X, Yin J X, Denner M M, Shumiya N, Ortiz B R, Xu G, Guguchia Z, He J Y, Hossain M S, Liu X X, Ruff J, Kautzsch L, Zhang S T S, Chang G Q, Belopolski I, Zhang Q, Cochran T A, Multer D, Litskevich M, Cheng Z J, Yang X P, Wang Z Q, Thomale R, Neupert T, Wilson S D, and Hasan M Z 2021 Nat. Mater. 20 1353
[29] Ortiz B R, Sarte P M, Kenney E M, Graf M J, Teicher S M L, Seshadri R, and Wilson S D 2021 Phys. Rev. Mater. 5 034801
[30] Zhao J Z, Wu W K, Wang Y L, and Yang S Y A 2021 Phys. Rev. B 103 L241117
[31] Liang Z W, Hou X Y, Zhang F, Ma W R, Wu P, Zhang Z Y, Yu F H, Ying J J, Jiang K, Shan L, Wang Z Y, and Chen X H 2021 Phys. Rev. X 11 031026
[32] Shumiya N, Hossain M S, Yin J X, Jiang Y X, Ortiz B R, Liu H X, Shi Y G, Yin Q W, Lei H C, Zhang S T S, Chang G Q, Zhang Q, Cochran T A, Multer D, Litskevich M, Cheng Z J, Yang X P, Guguchia Z, Wilson S D, and Hasan M Z 2021 Phys. Rev. B 104 035131
[33] Ortiz B R, Teicher S M L, Hu Y, Zuo J L, Sarte P M, Schueller E C, Milinda A A M, Krogstad M J, Rosenkranz S, Osborn R, Seshadri R, Balents L, He J, and Wilson S D 2020 Phys. Rev. Lett. 125 247002
[34] Chen P J and Jeng H T 2016 Sci. Rep. 6 23151
[35] Wu X J, Dai J, Zhao Y, Zhuo Z W, Yang J L, Zeng X C 2012 ACS Nano 6 7443
[36] Gao M, Li Q Z, Yan X W, and Wang J 2017 Phys. Rev. B 95 024505
[37] Zhao Y C, Zeng S M, Lian C, Dai Z H, Meng S, and Ni J 2018 Phys. Rev. B 98 134514
[38] Penev E S, Kutana A, and Yakobson B I 2016 Nano Lett. 16 2522
[39] Qu Z Y, Han F J J, Yu T, Xu M L, Li Y W, and Yang G C 2020 Phys. Rev. B 102 075431
[40] Xie S Y, Li X B, Tian W Q, Chen N K, Wang Y L, Zhang S B, and Sun H B 2015 Phys. Chem. Chem. Phys. 17 1093
[41] Bo T, Liu P F, Yan L, and Wang B T 2020 Phys. Rev. Mater. 4 114802
[42] Profeta G, Calandra M, and Mauri F 2012 Nat. Phys. 8 131
[43] Lu H Y, Yang Y, Hao L, Wang W S, Geng L, Zheng M M, Li Y, Jiao N, Zhang P, and Ting C S 2020 Phys. Rev. B 101 214514
[44] Savini G, Ferrari A C, and Giustino F 2010 Phys. Rev. Lett. 105 037002
[45] Bekaert J, Petrov M, Aperis A, Oppeneer P M, and Milosevic M V 2019 Phys. Rev. Lett. 123 077001
[46] Li Y P, Yang L, Liu H D, Jiao N, Ni M Y, Hao N, Lu H Y, and Zhang P 2022 Phys. Chem. Chem. Phys. 24 9256
[47]Jiao N, Liu H D, Yang L, Li Y P, Zheng M M, Lu H Y, and Zhang P 2022 Europhys. Lett. 138 46002
[48] Bacic V, Popov I A, Boldyrev A I, Heine T, Frauenheim T, and Ganz E 2015 J. Am. Chem. Soc. 137 2757
[49] Feng B J, Fu B T, Kasamatsu S, Ito S, Cheng P, Liu C C, Feng Y, Wu S, Mahatha S K, Sheverdyaeva P, Moras P, Arita M, Sugino O, Chiang T C, Shimada K, Miyamoto K, Okuda T, Wu K, Chen L, Yao Y, and Matsuda I 2017 Nat. Commun. 8 1007
[50] Yang L M, Popov I A, Frauenheim T, Boldyrev A I, Heine T, Bačić V, and Ganz E 2015 Phys. Chem. Chem. Phys. 17 26043
[51] Yang L M, Popov I A, Boldyrev A I, Heine T, Frauenheim T, and Ganz E 2015 Phys. Chem. Chem. Phys. 17 17545
[52] Guo H M and Franz M 2009 Phys. Rev. B 80 113102
[53] Zhang S H, Kang M, Huang H Q, Jiang W, Ni X J, Kang L, Zhang S P, Xu H X, Liu Z, and Liu F 2019 Phys. Rev. B 99 100404(R)
[54] Kang M G, Ye L, Fang S, You J S, Levitan A, Han M Y, Facio J I, Jozwiak C, Bostwic A, Rotenberg E, Chan M K, McDonald R D, Graf D, Kaznatcheev K, Vescovo E, Bell D C, Kaxiras E, Brink J V D, Richter M, Ghimire M P, Checkelsky J G, and Comin R 2020 Nat. Mater. 19 163
[55] Peng S T, Han Y L, Pokharel G, Shen J C, Li Z Y, Hashimoto M, Lu D H, Ortiz B R, Luo Y, Li H C, Guo M Y, Wang B Q, Cui S T, Sun Z, Qiao Z H, Wilson S D, and He J F 2021 Phys. Rev. Lett. 127 266401
[56] Sales B C, Meier W R, May A F, Xing J, Yan J Q, Gao S, Liu Y H, Stone M B, Christianson A D, Zhang Q, and McGuire M A 2021 Phys. Rev. Mater. 5 044202
[57] Neupert T, Denner M M, Yin J X, Thomale R, and Hasan M Z 2022 Nat. Phys. 18 137
[58] Efetov D K and Kim P 2010 Phys. Rev. Lett. 105 256805
Related articles from Frontiers Journals
[1] Zi-Tao Zhang, Yu-Jie Qiao, Ting-Na Shao, Qiang Zhao, Xing-Yu Chen, Mei-Hui Chen, Fang-Hui Zhu, Rui-Fen Dou, Hai-Wen Liu, Chang-Min Xiong, and Jia-Cai Nie. Anomalous Metallic State Driven by Magnetic Field at the LaAlO$_{3}$/KTaO$_{3}$ (111) Interface[J]. Chin. Phys. Lett., 2023, 40(3): 017402
[2] Dong Li, Yue Liu, Zouyouwei Lu, Peiling Li, Yuhang Zhang, Sheng Ma, Jiali Liu, Jihu Lu, Hua Zhang, Guangtong Liu, Fang Zhou, Xiaoli Dong, and Zhongxian Zhao. Quasi-Two-Dimensional Nature of High-$T_{\rm c}$ Superconductivity in Iron-Based (Li,Fe)OHFeSe[J]. Chin. Phys. Lett., 2022, 39(12): 017402
[3] Ziqin Yang, Shichun Huang, Yuan He, Xiangyang Lu, Hao Guo, Chunlong Li, Xiaofei Niu, Pingran Xiong, Yukun Song, Andong Wu, Bin Xie, Zhiming You, Qingwei Chu, Teng Tan, Feng Pan, Ming Lu, Didi Luo, Junhui Zhang, Shenghu Zhang, and Wenlong Zhan. Low-Temperature Baking Effect of the Radio-Frequency Nb$_{3}$Sn Thin Film Superconducting Cavity[J]. Chin. Phys. Lett., 2021, 38(9): 017402
[4] Ying Xiang, Qing Li, Yueying Li, Huan Yang, Yuefeng Nie, and Hai-Hu Wen. Physical Properties Revealed by Transport Measurements for Superconducting Nd$_{0.8}$Sr$_{0.2}$NiO$_{2}$ Thin Films[J]. Chin. Phys. Lett., 2021, 38(4): 017402
[5] Jian Xing, Li-Tian Wang, Xiao-Xin Gao, Xue-Lian Liang, Kai-Yong He, Ting Xue, Sheng-Hui Zhao, Jin-Li Zhang, Ming He, Xin-Jie Zhao, Shao-Lin Yan, Pei Wang, and Lu Ji. Erratum: Growth of TlBa$_{2}$Ca$_{2}$Cu$_{3}$O$_{9}$ Epitaxial Thin Films by Two-Step Method in Argon [Chin. Phys. Lett. 36 (2019) 057401][J]. Chin. Phys. Lett., 2021, 38(2): 017402
[6] Yang Ma, Jiasen Niu, Wenyu Xing, Yunyan Yao, Ranran Cai, Jirong Sun, X. C. Xie, Xi Lin, and Wei Han. Superconductor-Metal Quantum Transition at the EuO/KTaO$_{3}$ Interface[J]. Chin. Phys. Lett., 2020, 37(11): 017402
[7] Shuai Zhang, Yiyan Wang, Chaoyang Ma, Wenliang Zhu, Zhian Ren, Lei Shan, and Genfu Chen. Superconductivity at the Normal Metal/Dirac Semimetal Cd$_3$As$_2$ Interface[J]. Chin. Phys. Lett., 2020, 37(7): 017402
[8] Yonghao Yuan, Xintong Wang, Canli Song, Lili Wang, Ke He, Xucun Ma, Hong Yao, Wei Li, Qi-Kun Xue. Observation of Coulomb Gap and Enhanced Superconducting Gap in Nano-Sized Pb Islands Grown on SrTiO$_{3}$[J]. Chin. Phys. Lett., 2020, 37(1): 017402
[9] Xin Shang, Hai-Wen Liu, Ke Xia. Charge Transport Properties of the Majorana Zero Mode Induced Noncollinear Spin Selective Andreev Reflection[J]. Chin. Phys. Lett., 2019, 36(10): 017402
[10] Lingjie Yu, Heqing Wang, Hao Li, Zhen Wang, Yidong Huang, Lixing You, Wei Zhang. A Silicon Shallow-Ridge Waveguide Integrated Superconducting Nanowire Single Photon Detector Towards Quantum Photonic Circuits[J]. Chin. Phys. Lett., 2019, 36(8): 017402
[11] Hao Ru, Yi-Shi Lin, Yin-Cong Chen, Yang Feng, Yi-Hua Wang. Observation of Two-Level Critical State in the Superconducting FeTe Thin Films$^*$[J]. Chin. Phys. Lett., 2019, 36(7): 017402
[12] Jian Xing, Li-Tian Wang, Xiao-Xin Gao, Xue-Lian Liang, Kai-Yong He, Ting Xue, Sheng-Hui Zhao, Jin-Li Zhang, Ming He, Xin-Jie Zhao, Shao-Lin Yan, Pei Wang, Lu Ji. Growth of TlBa$_{2}$Ca$_{2}$Cu$_{3}$O$_{9}$ Epitaxial Thin Films by Two-Step Method in Argon[J]. Chin. Phys. Lett., 2019, 36(5): 017402
[13] Hui-Ying Liu, Jun-Ren Shi. Radiation-Induced Oscillating Gap States of Nonequilibrium Two-Dimensional Superconductors[J]. Chin. Phys. Lett., 2018, 35(6): 017402
[14] Yulong Huang, Zhongpei Feng, Shunli Ni, Jun Li, Wei Hu, Shaobo Liu, Yiyuan Mao, Huaxue Zhou, Fang Zhou, Kui Jin, Huabing Wang, Jie Yuan, Xiaoli Dong, Zhongxian Zhao. Superconducting (Li,Fe)OHFeSe Film of High Quality and High Critical Parameters[J]. Chin. Phys. Lett., 2017, 34(7): 017402
[15] Jie Liu, Li-Qun Zhang, Zhen-Nan Jiang, Kamal Ahmad, Jian-She Liu, Wei Chen. Superconducting Nanowire Single Photon Detector with Optical Cavity[J]. Chin. Phys. Lett., 2016, 33(08): 017402
Viewed
Full text


Abstract