Chin. Phys. Lett.  2022, Vol. 39 Issue (7): 077403    DOI: 10.1088/0256-307X/39/7/077403
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Continuously Doping Bi$_{2}$Sr$_{2}$CaCu$_{2}$O$_{8+\delta}$ into Electron-Doped Superconductor by CaH$_{2}$ Annealing Method
Jin Zhao1,2†, Yu-Lin Gan1,2†, Guang Yang1,2†, Yi-Gui Zhong1,2,3, Cen-Yao Tang1,2, Fa-Zhi Yang1,2, Giao Ngoc Phan1, Qiang-Tao Sui1,2, Zhong Liu1, Gang Li1, Xiang-Gang Qiu1, Qing-Hua Zhang1, Jie Shen1, Tian Qian1,4, Li Lu1, Lei Yan1, Gen-Da Gu5, and Hong Ding1,2,4*
1Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2School of Physics, University of Chinese Academy of Sciences, Beijing 100190, China
3Institute for Solid State Physics, University of Tokyo, Chiba 277-8581, Japan
4Songshan Lake Materials Laboratory, Dongguan 523808, China
5Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, USA
Cite this article:   
Jin Zhao, Yu-Lin Gan, Guang Yang et al  2022 Chin. Phys. Lett. 39 077403
Download: PDF(1360KB)   PDF(mobile)(2131KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract As a typical hole-doped cuprate superconductor, Bi$_{2}$Sr$_{2}$CaCu$_{2}$O$_{8+\delta}$(Bi2212) carrier doping is mostly determined by its oxygen content. Traditional doping methods can regulate its doping level within the range of hole doping. Here we report the first application of CaH$_{2}$ annealing method in regulating the doping level of Bi2212. By continuously controlling the anneal time, a series of differently doped samples can be obtained. The combined experimental results of x-ray diffraction, scanning transmission electron microscopy, resistance and Hall measurements demonstrate that the CaH$_{2}$ induced topochemical reaction can effectively change the oxygen content of Bi2212 within a very wide range, even switching from hole doping to electron doping. We also found evidence of a low-$T_{\rm c}$ superconducting phase in the electron doping side.
Received: 19 May 2022      Express Letter Published: 20 June 2022
PACS:  74.72.-h (Cuprate superconductors)  
  74.25.F- (Transport properties)  
  74.72.Ek (Electron-doped)  
  74.25.Dw (Superconductivity phase diagrams)  
TRENDMD:   
URL:  
http://cpl.iphy.ac.cn/10.1088/0256-307X/39/7/077403       OR      http://cpl.iphy.ac.cn/Y2022/V39/I7/077403
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jin Zhao
Yu-Lin Gan
Guang Yang
Yi-Gui Zhong
Cen-Yao Tang
Fa-Zhi Yang
Giao Ngoc Phan
Qiang-Tao Sui
Zhong Liu
Gang Li
Xiang-Gang Qiu
Qing-Hua Zhang
Jie Shen
Tian Qian
Li Lu
Lei Yan
Gen-Da Gu
and Hong Ding
[1] Bednorz J G and Müller K A 1986 Z. Phys. B 64 189
[2] Tokura Y, Takagi H, and Uchida S 1989 Nature 337 345
[3] Jang S W, Sakakibara H, Kino H, Kotani T, Kuroki K, and Han M J 2016 Sci. Rep. 6 33397
[4] Rybicki D, Jurkutat M, Reichardt S, Kapusta C, and Haase J 2016 Nat. Commun. 7 11413
[5] Jin C Q, Laffez P, Tatsuki T, Tamura T, Adachi S, Koshizuka N Y H, Tanaka S, and Wu X J 1995 Nature 375 301
[6] Mazumdar S 2018 Phys. Rev. B 98 205153
[7] Naito M, Krockenberger Y, Ikeda A, and Yamamoto H 2016 Physica C 523 28
[8] Weber C, Haule K, and Kotliar G 2010 Nat. Phys. 6 574
[9] Li Y M, Tabis W, Tang Y, Yu G, Jaroszynski J, Barišić N, and Greven M 2019 Sci. Adv. 5 eaap7349
[10] Hirsch J E and Marsiglio F 2019 Physica C 564 29
[11] Segawa K, Kofu M, Lee S H, Tsukada I, Hiraka H, Fujita M, Chang S, Yamada K, and Ando Y 2010 Nat. Phys. 6 579
[12] Adachi T, Kawamata T, and Koike Y 2017 Condens. Matter 2 23
[13] Hu C, Zhao J F, Gao Q, Yan H T, Rong H T, Huang J W, Liu J, C, Y Q, Li C, Chen H, Zhao L, Liu G D, Jin C Q, Xu Z Y, Xiang T, and Zhou X J 2021 Nat. Commun. 12 1356
[14] Segawa K and Ando Y 2006 Phys. Rev. B 74 100508
[15] Zhong Y, Fan J Q, Wang R F, Wang S Z, Zhang X F, Zhu Y Y, Dou Z Y, Yu X Q, Wang Y, Zhang D, Zhu J, Song C L, Ma X C, and Xue Q K 2020 Phys. Rev. Lett. 125 077002
[16] Zeng S W, Wang X, Lü W M, Huang Z, Motapothula M, Liu Z Q, Zhao Y L, Annadi A, Dhar S, Mao H, Chen W, Venkatesan T, and A 2012 Phys. Rev. B 86 045124
[17] Zhong Y G, Guan J Y, Shi X, Zhao J, Rao Z C, Tang C Y, Liu H J, Weng Z Y, Wang Z Q, Gu G D, Qian T, Sun Y J, and Ding H 2018 Phys. Rev. B 98 140507
[18] Zhong Y G, Guan J Y, Zhao J, Tang C Y, Rao Z C, Liu H J, Zhang J H, Li S, Weng Z Y, Gu G D, Sun Y J, and Ding H 2019 Phys. Rev. B 100 184504
[19] Tang C Y, Lin Z F, Zhang J X, Guo X C, Guan J Y, Gao S Y, Rao Z C, Zhao J, Huang Y B, Qian T, Weng Z Y, Jin K, Sun Y J, and Ding H 2021 Phys. Rev. B 104 155125
[20] Li D F, Lee K, Wang B Y, Osada M, Crossley S, Lee H R, Cui Y, Hikita Y, and Hwang H Y 2019 Nature 572 624
[21] Wen J S, Xu Z J, Xu G Y, Hücker M, Tranquada J M, and Gu G D 2008 J. Cryst. Growth 310 1401
[22] Jindal A, Jangade D A, Kumar N, Vaidya J, Das I, Bapat R, Parmar J, Chalke B A, Thamizhavel A, and Deshmukh M M 2017 Sci. Rep. 7 3295
[23] Song D S, Zhang X F, Lian C S L H, Alexandrou I, Lazić I, Bosch E G T, Zhang D, Wang L L, Yu R, Cheng Z Y, Song C L, Ma X C, Duan W H, Xue Q K, and Zhu J 2019 Adv. Funct. Mater. 29 1903843
[24] Presland M R, Tallon J L, Buckley R G, Liu R S, and Flower N E 1991 Physica C 176 95
[25] Tallon J L, Bernhard C, Shaked H, Hitterman R L, and Jorgensen J D 1995 Phys. Rev. B 51 12911
[26] Liu J, Zhao L, Gao Q et al. 2019 Chin. Phys. B 28 077403
[27] Quaranta Q, Gades L M, Xue C, Divan R, Patel U M, Guruswamy T, and Miceli A 2021 arXiv:2111.02503 [cond-mat.mtrl-sci]
[28] Thiery N, Naletov V V, Vila L, Marty A, Brenac A, Jacquot J F, Loubens G D, Viret M, Anane A, Cros V, Youssef J B, Beaulieu N, Demidov V E, Divinskiy B, Demokritov S O, and Klein O 2018 Phys. Rev. B 97 064422
[29] Prakash O, Kumar A, Thamizhavel A, and Ramakrishnan S 2017 Science 355 52
[30] Medina J C, Bizarro M, Silva-Bermudez P, Giorcelli M, Tagliaferro A, and Rodil S E 2016 Thin Solid Films 612 72
[31] Thaowonkaew S, Chao-moo W, Nontra-udorn R, Vora-ud A, and Seetawan T 2017 Mater. Today Proc. 4 6592
[32] Piriou A, Giannini E, Fasano Y, Senatore C, and Fischer Y 2010 Phys. Rev. B 81 144517
[33] Adachi S, Usui T, Takahashi K, Kosugi K, Watanabe T, Nishizaki T, Adachi T, Kimura S, Sato K, Suzuki K M, Fujita M, Yamada K, and Fujii T 2015 Phys. Procedia 65 53
[34] Altın S, Aksan M A, YakıN M E, and BalcıY 2010 J. Alloys Compd. 502 16
[35] Tian M L, Wang J, Ning W, Mallouk T E, and Chan M H W 2015 Nano Lett. 15 1487
[36] Li Y F, Wang E Y, Zhu X Y, and Wen H H 2017 Phys. Rev. B 95 024510
[37] Koza J A, Bohannan E W, and Switzer J A 2013 ACS Nano 7 9940
Related articles from Frontiers Journals
[1] Ziwen Chen, Yulong Li, Rui Zhu, Jun Xu, Tiequan Xu, Dali Yin, Xinwei Cai, Yue Wang, Jianming Lu, Yan Zhang, and Ping Ma. High-Temperature Superconducting YBa$_{2}$Cu$_{3}$O$_{7-\delta}$ Josephson Junction Fabricated with a Focused Helium Ion Beam[J]. Chin. Phys. Lett., 2022, 39(7): 077403
[2] Xuan Sun, Wen-Tao Zhang, Lin Zhao, Guo-Dong Liu, Gen-Da Gu, Qin-Jun Peng, Zhi-Min Wang, Shen-Jin Zhang, Feng Yang, Chuang-Tian Chen, Zu-Yan Xu, Xing-Jiang Zhou. Temperature Evolution of Energy Gap and Band Structure in the Superconducting and Pseudogap States of Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$ Superconductor Revealed by Laser-Based Angle-Resolved Photoemission Spectroscopy[J]. Chin. Phys. Lett., 2018, 35(1): 077403
[3] Ming-Qiang Ren, Ya-Jun Yan, Tong Zhang, Dong-Lai Feng. Possible Nodeless Superconducting Gaps in Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$ and YBa$_2$Cu$_3$O$_{7-x}$ Revealed by Cross-Sectional Scanning Tunneling Spectroscopy[J]. Chin. Phys. Lett., 2016, 33(12): 077403
[4] Zhao-Xia Zhang, Feng Xue, Xiao-Fan Gou. Interaction of Two Parallel Cracks in REBCO Bulk Superconductors under Applied Magnetic Field[J]. Chin. Phys. Lett., 2016, 33(07): 077403
[5] Yu-Xiao Zhang, Lin Zhao, Gen-Da Gu, Xing-Jiang Zhou. A Reproducible Approach of Preparing High-Quality Overdoped Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$ Single Crystals by Oxygen Annealing and Quenching Method[J]. Chin. Phys. Lett., 2016, 33(06): 077403
[6] GOU Xiao-Fan, ZHU Guang. A Modified Lattice Model of the Reversible Effect of Axial Strain on the Critical Current of Polycrystalline REBa2Cu3O7−δ Films[J]. Chin. Phys. Lett., 2015, 32(03): 077403
[7] WANG Fang-Fang, WEI Peng-Yue, DING Xue-Yong, XING Xian-Ran, CHEN Xing-Qiu. Towards a Mechanism Underlying the Stability of the Tetragonal CuO Phase: Comparison with NiO and CoO by Hybrid Density Functional Calculation[J]. Chin. Phys. Lett., 2014, 31(2): 077403
[8] ZHANG Dan-Bo, HAN Qiang, WANG Zi-Dan. The Generalized Joint Density of States and Its Application to Exploring the Pairing Symmetry of High-Tc Superconductors[J]. Chin. Phys. Lett., 2013, 30(5): 077403
[9] XIA Feng-Jin, WU Hao, FU Yue-Ju, XU Bo, YUAN Jie, ZHU Bei-Yi, QIU Xiang-Gang, CAO Li-Xin, LI Jun-Jie, JIN Ai-Zi, WANG Yu-Mei, LI Fang-Hua, LIU Bao-Ting, XIE Zhong, ZHAO Bai-Ru. A New Bipolar Type Transistor Created Based on Interface Effects of Integrated All Perovskite Oxides[J]. Chin. Phys. Lett., 2012, 29(10): 077403
[10] CHANG Hao-Ran**,WANG Jing-Rong,WANG Jing. Influence of Fermion Velocity Renormalization on Dynamical Mass Generation in QED3[J]. Chin. Phys. Lett., 2012, 29(5): 077403
[11] Minoru SUZUKI, Kenji HAMADA, Ryota TAKEMURA, Masayuki OHMAKI, Itsuhiro KAKEYA. Overdoped High Current Density Bi2-xPbxSr2CaCu2O8+δ Intrinsic Josephson Junction Mesas and Their Switching Current Distributions[J]. Chin. Phys. Lett., 2010, 27(8): 077403
[12] CHEN Lei-Ming, LI Guang-Cheng, ZHANG Yan, GUO Yan-Feng. Film Thickness Dependence of Rectifying Properties of La1.85Sr0.15CuO4/Nb-SrTiO3 Junctions[J]. Chin. Phys. Lett., 2010, 27(7): 077403
[13] YOU Feng, WANG Zheng, XIE Qing-Lian, JI Lu, YUE Hong-Wei, ZHAO Xin-Jie, FANG Lan, YAN Shao-Lin. Fabrication and Properties of Double-Side Tl2Ba2CaCu2O8 Thin Film on CeO2 Buffered Sapphire Substrate[J]. Chin. Phys. Lett., 2010, 27(4): 077403
[14] LU Hong-Yan, WAN Yuan, HE Xiang-Mei, WANG Qiang-Hua. Mechanism of Pseudogap Detected by Electronic Raman Scattering: Phase Fluctuation or Hidden Order?[J]. Chin. Phys. Lett., 2009, 26(9): 077403
[15] YU Yong, ZHAI Guang-Jie, JIN Chang-Qing. A Simple System to Measure Superconducting Transition Temperature at High Pressure[J]. Chin. Phys. Lett., 2009, 26(2): 077403
Viewed
Full text


Abstract