Chin. Phys. Lett.  2022, Vol. 39 Issue (7): 077401    DOI: 10.1088/0256-307X/39/7/077401
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Coexistence of Quasi-two-dimensional Superconductivity and Tunable Kondo Lattice in a van der Waals Superconductor
Shiwei Shen1, Tian Qin1, Jingjing Gao2,3, Chenhaoping Wen1, Jinghui Wang1,4, Wei Wang2,3, Jun Li1,4, Xuan Luo2, Wenjian Lu2, Yuping Sun2,5,6*, and Shichao Yan1,4*
1School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
2Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
3University of Science and Technology of China, Hefei 230026, China
4ShanghaiTech Laboratory for Topological Physics, ShanghaiTech University, Shanghai 201210, China
5High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
6Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing 210093, China
Cite this article:   
Shiwei Shen, Tian Qin, Jingjing Gao et al  2022 Chin. Phys. Lett. 39 077401
Download: PDF(4084KB)   PDF(mobile)(5447KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Realization of Kondo lattice in superconducting van der Waals materials not only provides a unique opportunity for tuning the Kondo lattice behavior by electrical gating or intercalation, but also is helpful for further understanding the heavy fermion superconductivity. Here we report a low-temperature and vector-magnetic-field scanning tunneling microscopy and spectroscopy study on a superconducting compound (4Hb-TaS$_{2})$ with alternate stacking of 1T-TaS$_{2}$ and 1H-TaS$_{2}$ layers. We observe the quasi-two-dimensional superconductivity in the 1H-TaS$_{2}$ layer with anisotropic response to the in-plane and out-of-plane magnetic fields. In the 1T-TaS$_{2}$ layer, we detect the Kondo resonance peak that results from the Kondo screening of the unpaired electrons in the Star-of-David clusters. We also find that the intensity of the Kondo resonance peak is sensitive to its relative position with the Fermi level, and it can be significantly enhanced when it is further shifted towards the Fermi level by evaporating Pb atoms onto the 1T-TaS$_{2}$ surface. Our results not only are important for fully understanding the electronic properties of 4Hb-TaS$_{2}$, but also pave the way for creating tunable Kondo lattice in the superconducting van der Waals materials.
Received: 15 April 2022      Express Letter Published: 01 June 2022
PACS:  74.70.-b (Superconducting materials other than cuprates)  
  68.37.Ef (Scanning tunneling microscopy (including chemistry induced with STM))  
  73.20.-r (Electron states at surfaces and interfaces)  
  68.65.-k (Low-dimensional, mesoscopic, nanoscale and other related systems: structure and nonelectronic properties)  
TRENDMD:   
URL:  
http://cpl.iphy.ac.cn/10.1088/0256-307X/39/7/077401       OR      http://cpl.iphy.ac.cn/Y2022/V39/I7/077401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Shiwei Shen
Tian Qin
Jingjing Gao
Chenhaoping Wen
Jinghui Wang
Wei Wang
Jun Li
Xuan Luo
Wenjian Lu
Yuping Sun
and Shichao Yan
[1] Lu J M et al. 2015 Science 350 1353
[2] Xi X et al. 2016 Nat. Phys. 12 139
[3] Cao Y et al. 2018 Nature 556 43
[4] Kezilebieke S et al. 2020 Nature 588 424
[5] Vaňo V et al. 2021 Nature 599 582
[6] Ruan W et al. 2021 Nat. Phys. 17 1154
[7] Liu M et al. 2021 Sci. Adv. 7 eabi6339
[8] Ribak A et al. 2020 Sci. Adv. 6 eaax9480
[9] Nayak A K et al. 2021 Nat. Phys. 17 1413
[10] Law K T and Lee P A 2017 Proc. Natl. Acad. Sci. USA 114 6996
[11] Butler C J et al. 2020 Nat. Commun. 11 2477
[12] Navarro-Moratalla E et al. 2016 Nat. Commun. 7 11043
[13] Gao J J et al. 2020 Phys. Rev. B 102 075138
[14] Di Salvo F J et al. 1973 J. Phys. Chem. Solids 34 1357
[15] Hughes H P and Scarfe J A 1995 Phys. Rev. Lett. 74 3069
[16] Wen C et al. 2021 Phys. Rev. Lett. 126 256402
[17] Doran N J, Wexler G, and Woolley A M 1978 J. Phys. C 11 2967
[18] Han W et al. 1994 Phys. Rev. B 50 14746
[19] Dynes R C et al. 1984 Phys. Rev. Lett. 53 2437
[20] Rossnagel K and Smith N V 2006 Phys. Rev. B 73 073106
[21] Shen S et al. 2022 Nat. Commun. 13 2156
[22] Nagaoka K et al. 2002 Phys. Rev. Lett. 88 077205
[23] Zhang Y H et al. 2013 Nat. Commun. 4 2110
[24] Allen J W et al. 1993 Physica B 186–188 307
[25] Liu L Z et al. 1992 Phys. Rev. Lett. 68 1034
[26] Madhavan V et al. 1998 Science 280 567
[27] Ernst S et al. 2011 Nature 474 362
[28] Seiro S et al. 2018 Nat. Commun. 9 3324
[29] Jiao L et al. 2016 Nat. Commun. 7 13762
[30] Wirth S and Steglich F 2016 Nat. Rev. Mater. 1 16051
[31] Dentelski D et al. 2021 Phys. Rev. B 103 224522
[32] Si Q and Steglich F 2010 Science 329 1161
[33] Jiao L et al. 2020 Nature 579 523
[34] Schemm E R et al. 2014 Science 345 190
[35] Gyenis A et al. 2018 Nat. Commun. 9 549
Related articles from Frontiers Journals
[1] Shuo Li, Shuo Han, Shaohua Yan, Yi Cui, Le Wang, Shanmin Wang, Shanshan Chen, Hechang Lei, Feng Yuan, Jinshan Zhang, and Weiqiang Yu. Pressure-Induced Superconductivity in Flat-Band Kagome Compounds Pd$_3$P$_2$(S$_{1-x}$Se$_x$)$_8$[J]. Chin. Phys. Lett., 2022, 39(6): 077401
[2] Yu Dong, Yangyang Lv, Zuyu Xu, M. Abdel-Hafiez, A. N. Vasiliev, Haipeng Zhu, Junfeng Wang, Liang Li, Wanghao Tian, Wei Chen, Song Bao, Jinghui Wang, Yueshen Wu, Yulong Huang, Shiliang Li, Jie Yuan, Kui Jin, Labao Zhang, Huabing Wang, Shun-Li Yu, Jinsheng Wen, Jian-Xin Li, Jun Li, and Peiheng Wu. Observation of a Ubiquitous ($\pi, \pi$)-Type Nematic Superconducting Order in the Whole Superconducting Dome of Ultra-Thin BaFe$_{2-x}$Ni$_x$As$_2$ Single Crystals[J]. Chin. Phys. Lett., 2021, 38(9): 077401
[3] Ziqin Yang, Shichun Huang, Yuan He, Xiangyang Lu, Hao Guo, Chunlong Li, Xiaofei Niu, Pingran Xiong, Yukun Song, Andong Wu, Bin Xie, Zhiming You, Qingwei Chu, Teng Tan, Feng Pan, Ming Lu, Didi Luo, Junhui Zhang, Shenghu Zhang, and Wenlong Zhan. Low-Temperature Baking Effect of the Radio-Frequency Nb$_{3}$Sn Thin Film Superconducting Cavity[J]. Chin. Phys. Lett., 2021, 38(9): 077401
[4] Qiang Gao, Yuchen Zhao, Xing-Jiang Zhou, and Zhihai Zhu. Preparation of Superconducting Thin Films of Infinite-Layer Nickelate Nd$_{0.8}$Sr$_{0.2}$NiO$_{2}$[J]. Chin. Phys. Lett., 2021, 38(7): 077401
[5] Yi Cui, Cong Li, Qing Li, Xiyu Zhu, Ze Hu, Yi-feng Yang, Jinshan Zhang, Rong Yu, Hai-Hu Wen, and Weiqiang Yu. NMR Evidence of Antiferromagnetic Spin Fluctuations in Nd$_{0.85}$Sr$_{0.15}$NiO$_2$[J]. Chin. Phys. Lett., 2021, 38(6): 077401
[6] Yongqing Cai, Tao Xie, Huan Yang, Dingsong Wu, Jianwei Huang, Wenshan Hong, Lu Cao, Chang Liu, Cong Li, Yu Xu, Qiang Gao, Taimin Miao, Guodong Liu, Shiliang Li, Li Huang, Huiqian Luo, Zuyan Xu, Hongjun Gao, Lin Zhao, and X. J. Zhou. Common ($\pi$,$\pi$) Band Folding and Surface Reconstruction in FeAs-Based Superconductors[J]. Chin. Phys. Lett., 2021, 38(5): 077401
[7] Fang Hong, Liuxiang Yang, Pengfei Shan, Pengtao Yang, Ziyi Liu, Jianping Sun, Yunyu Yin, Xiaohui Yu, Jinguang Cheng, and Zhongxian Zhao. Superconductivity of Lanthanum Superhydride Investigated Using the Standard Four-Probe Configuration under High Pressures[J]. Chin. Phys. Lett., 2020, 37(10): 077401
[8] Kang Zhao, Qing-Ge Mu, Bin-Bin Ruan, Meng-Hu Zhou, Qing-Song Yang, Tong Liu, Bo-Jin Pan, Shuai Zhang, Gen-Fu Chen, and Zhi-An Ren. A New Quasi-One-Dimensional Ternary Molybdenum Pnictide Rb$_{2}$Mo$_{3}$As$_{3}$ with Superconducting Transition at 10.5 K[J]. Chin. Phys. Lett., 2020, 37(9): 077401
[9] Qiong Wu, Huaxue Zhou, Yanling Wu, Lili Hu, Shunli Ni, Yichao Tian, Fei Sun, Fang Zhou, Xiaoli Dong, Zhongxian Zhao, and Jimin Zhao. Ultrafast Quasiparticle Dynamics and Electron-Phonon Coupling in (Li$_{0.84}$Fe$_{0.16}$)OHFe$_{0.98}$Se[J]. Chin. Phys. Lett., 2020, 37(9): 077401
[10] Shuai Zhang, Yiyan Wang, Chaoyang Ma, Wenliang Zhu, Zhian Ren, Lei Shan, and Genfu Chen. Superconductivity at the Normal Metal/Dirac Semimetal Cd$_3$As$_2$ Interface[J]. Chin. Phys. Lett., 2020, 37(7): 077401
[11] Yi Cui, Ze Hu, Jin-Shan Zhang, Wen-Long Ma, Ming-Wei Ma, Zhen Ma, Cong Wang, Jia-Qiang Yan, Jian-Ping Sun, Jin-Guang Cheng, Shuang Jia, Yuan Li, Jin-Sheng Wen, He-Chang Lei, Pu Yu, Wei Ji, Wei-Qiang Yu. Ionic-Liquid-Gating Induced Protonation and Superconductivity in FeSe, FeSe$_{0.93}$S$_{0.07}$, ZrNCl, 1$T$-TaS$_2$ and Bi$_2$Se$_3$[J]. Chin. Phys. Lett., 2019, 36(7): 077401
[12] Bo-Jin Pan, Kang Zhao, Tong Liu, Bin-Bin Ruan, Shuai Zhang, Gen-Fu Chen, Zhi-An Ren. Direct Microwave Synthesis of 11-Type Fe(Te,Se) Polycrystalline Superconductors with Enhanced Critical Current Density[J]. Chin. Phys. Lett., 2019, 36(1): 077401
[13] Juanjuan Liu, A. T. Savici, G. E. Granroth, K. Habicht, Y. Qiu, Jin Hu, Z. Q. Mao, Wei Bao. A Triplet Resonance in Superconducting Fe$_{1.03}$Se$_{0.4}$Te$_{0.6}$[J]. Chin. Phys. Lett., 2018, 35(12): 077401
[14] Xiao-Chuan Wang, Jia Yu, Bin-Bin Ruan, Bo-Jin Pan, Qing-Ge Mu, Tong Liu, Kang Zhao, Gen-Fu Chen, Zhi-An Ren. Revisiting the Electron-Doped SmFeAsO: Enhanced Superconductivity up to 58.6K by Th and F Codoping[J]. Chin. Phys. Lett., 2017, 34(7): 077401
[15] Jun Ma, Bin-Bin Fu, Jun-Zhang Ma, Ling-Yuan Kong, Di Chen, Ji-Feng Shao, Chang-Jin Zhang, Tian Qian, Yu-Heng Zhang, Hong Ding. Experimental Investigation of Electronic Structure of La(O,F)BiSe$_{2}$[J]. Chin. Phys. Lett., 2016, 33(12): 077401
Viewed
Full text


Abstract