Chin. Phys. Lett.  2022, Vol. 39 Issue (7): 076101    DOI: 10.1088/0256-307X/39/7/076101
Partially Diffusive Helium-Silica Compound under High Pressure
Cong Liu1,2, Junjie Wang1, Xin Deng3, Xiaomeng Wang1, Chris J. Pickard4,5, Ravit Helled6, Zhongqing Wu3, Hui-Tian Wang1, Dingyu Xing1, and Jian Sun1*
1National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
2Departament de Física, Universitat Politècnica de Catalunya, Campus Nord B4-B5, E-08034 Barcelona, Spain
3Laboratory of Seismology and Physics of Earth's Interior, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
4Department of Materials Science & Metallurgy, University of Cambridge, Cambridge CB3 0FS, UK
5Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
6Institute for Computational Science, Center for Theoretical Astrophysics & Cosmology, University of Zurich, Switzerland
Cite this article:   
Cong Liu, Junjie Wang, Xin Deng et al  2022 Chin. Phys. Lett. 39 076101
Download: PDF(2586KB)   PDF(mobile)(5689KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Helium is the second most abundant element in the universe, and together with silica, they are important components of giant planets. Exploring the reactivity and state of helium and silica under high pressure is crucial for understanding of the evolution and internal structure of giant planets. Here, using first-principles calculations and crystal structure predictions, we identify four stable phases of a helium-silica compound with seven/eight-coordinated silicon atoms at pressure of 600–4000 GPa, corresponding to the interior condition of the outer planets in the solar system. The density of HeSiO$_{2}$ agrees with current structure models of the planets. This helium-silica compound exhibits a superionic-like helium diffusive state under the high-pressure and high-temperature conditions along the isentropes of Saturn, a metallic fluid state in Jupiter, and a solid state in the deep interiors of Uranus and Neptune. These results show that helium may affect the erosion of the rocky core in giant planets and may help to form a diluted core region, which not only highlight the reactivity of helium under high pressure but also provide evidence helpful for building more sophisticated interior models of giant planets.
Received: 28 April 2022      Express Letter Published: 17 June 2022
PACS:  61.50.-f (Structure of bulk crystals)  
  74.62.Fj (Effects of pressure)  
  03.75.Kk (Dynamic properties of condensates; collective and hydrodynamic excitations, superfluid flow)  
URL:       OR
E-mail this article
E-mail Alert
Articles by authors
Cong Liu
Junjie Wang
Xin Deng
Xiaomeng Wang
Chris J. Pickard
Ravit Helled
Zhongqing Wu
Hui-Tian Wang
Dingyu Xing
and Jian Sun
[1] Saumon D and Guillot T 2004 Astrophys. J. 609 1170
[2] Redmer R, Mattsson T R, Nettelmann N, and French M 2011 Icarus 211 798
[3] Bethkenhagen M, Meyer E R, Hamel S, Nettelmann N, French M, Scheibe L, Ticknor C, Collins L A, Kress J D, Fortney J J, and Redmer R 2017 Astrophys. J. 848 67
[4] Debras F and Chabrier G 2019 Astrophys. J. 872 100
[5] Helled R, Nettelmann N, and Guillot T 2020 Space Sci. Rev. 216 38
[6] Helled R 2019 The Interiors of Jupiter and Saturn in Oxford Research Encyclopedias: Planetary Science (Oxford: Oxford University Press)
[7] Vazan A, Sari R, and Kessel R 2020 arXiv:2011.00602 [astro-ph.EP]
[8] Mankovich C and Fuller J 2021 arXiv:2104.13385 [astro-ph.EP]
[9] Müller S, Helled R, and Cumming A 2020 Astron. & Astrophys. 638 A121
[10] Liu S F, Hori Y, Müller S, Zheng X, Helled R, Lin D, and Isella A 2019 Nature 572 355
[11] Cavazzoni C, Chiarotti G L, Scandolo S, Tosatti E, Bernasconi M, and Parrinello M 1999 Science 283 44
[12] Gao H, Liu C, Shi J, Pan S, Huang T, Lu X, Wang H T, Xing D, and Sun J 2022 Phys. Rev. Lett. 128 035702
[13] Li H F, Oganov A R, Cui H, Zhou X F, Dong X, and Wang H T 2022 Phys. Rev. Lett. 128 035703
[14] Dong X, Oganov A R, Goncharov A F, Stavrou E, Lobanov S, Saleh G, Qian G R, Zhu Q, Gatti C, Deringer V L, Dronskowski R, Zhou X F, Prakapenka V B, Popov Z K I A, Boldyrev A I, and Wang H T 2017 Nat. Chem. 9 440
[15] Liu C, Gao H, Wang Y, Needs R J, Pickard C J, Sun J, Wang H T, and Xing D 2019 Nat. Phys. 15 1065
[16] Bai Y H, Liu Z, Botana J, Yan D D, Lin H Q, Sun J, Pickard C J, Needs R J, and Miao M S 2019 Commun. Chem. 2 102
[17] Liu C, Gao H, Hermann A, Wang Y, Miao M, Pickard C J, Needs R J, Wang H T, Xing D, and Sun J 2020 Phys. Rev. X 10 021007
[18] Gao H, Liu C, Hermann A, Needs R J, Pickard C J, Wang H T, Xing D, and Sun J 2020 Natl. Sci. Rev. 7 1540
[19] Shi J, Cui W, Hao J, Xu M, Wang X, and Li Y 2020 Nat. Commun. 11 3164
[20] Tsuchiya T and Tsuchiya J 2011 Proc. Natl. Acad. Sci. USA 108 1252
[21] Wu S, Umemoto K, Ji M, Wang C Z, Ho K M, and Wentzcovitch R M 2011 Phys. Rev. B 83 184102
[22] Liu C, Shi J, Gao H, Wang J, Han Y, Lu X, Wang H T, Xing D, and Sun J 2021 Phys. Rev. Lett. 126 035701
[23] Umemoto K, Wentzcovitch R M, and Allen P B 2006 Science 311 983
[24] Miguel Y, Guillot T, and Fayon L 2016 Astron. & Astrophys. 596 A114
[25] Helled R and Guillot T 2013 Astrophys. J. 767 113
[26] Millot M, Dubrovinskaia N, Černok A, Blaha S, Dubrovinsky L, Braun D G, Celliers P M, Collins G W, Eggert J H, and Jeanloz R 2015 Science 347 418
[27] Soubiran F and Militzer B 2018 Nat. Commun. 9 3883
[28] Nettelmann N, Helled R, Fortney J J, and Redmer R 2013 Planet. Space Sci. 77 143
[29] Sato T, Funamori N, and Yagi T 2011 Nat. Commun. 2 345
[30] Xia K, Gao H, Liu C, Yuan J, Sun J, Wang H T, and Xing D 2018 Sci. Bull. 63 817
[31] Gao H, Wang J, Guo Z, and Sun J 2020 npj Comput. Mater. 6 143
[32] Pickard C J and Needs R J 2006 Phys. Rev. Lett. 97 045504
[33] Pickard C J and Needs R J 2011 J. Phys.: Condens. Matter 23 053201
[34] Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M I J, Refson K, and Payne M C 2005 Z. Kristallogr. - Cryst. Mater. 220 567
[35] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[36] Blöchl P E 1994 Phys. Rev. B 50 17953
[37] Perdew J P, Burke K, and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[38] Luo C, Deng X, Wang W, Shukla G, Wu Z, and Wentzcovitch R M 2021 Comput. Phys. Commun. 267 108067
[39] Togo A and Tanaka I 2015 Scr. Mater. 108 1
[40] Hoover W G 1985 Phys. Rev. A 31 1695
Related articles from Frontiers Journals
[1] Guoxiong Tang, Libin Wen, Hui Xing, Wenjie Liu, Jin Peng, Yu Wang, Yupeng Li, Baijiang Lv, Yusen Yang, Chao Yao, Yueshen Wu, Hong Sun, Zhu-An Xu, Zhiqiang Mao, and Ying Liu. Structural Domain Imaging and Direct Determination of Crystallographic Orientation in Noncentrosymmetric Ca$_{3}$Ru$_{2}$O$_{7}$ Using Polarized Light Reflectance[J]. Chin. Phys. Lett., 2020, 37(10): 076101
[2] Sheng Jiang, Jing Liu, Xiao-Dong Li, Yan-Chun Li, Shang-Ming He, Ji-Chao Zhang. High-Pressure Phase Transitions of Cubic Y$_{2}$O$_{3}$ under High Pressures by In-situ Synchrotron X-Ray Diffraction[J]. Chin. Phys. Lett., 2019, 36(4): 076101
[3] Jun-Ying Zhang, Shu-Juan Han, Lin-Tao Liu, Qian Yao, Wei-Min Dong, Jing Li. Crystal Structure and Judd–Ofelt Analysis of Er$^{3+}$ Doped LuAl$_{3}$(BO$_{3}$)$_{4}$ Crystal[J]. Chin. Phys. Lett., 2018, 35(9): 076101
[4] Zhi-Dong Han, Heng-Wei Luan, Shao-Fan Zhao, Na Chen, Rui-Xuan Peng, Yang Shao, Ke-Fu Yao. Microstructures and Mechanical Properties of AlCrFeNiMo$_{0.5}$Ti$_{x}$ High Entropy Alloys[J]. Chin. Phys. Lett., 2018, 35(3): 076101
[5] Yun-Peng Gao, Wan-Qing Dong, Gong Li, Ri-Ping Liu. Influence of Pressure on the Annealing Process of $\beta$-Ca$_{2}$SiO$_{4}$(C$_{2}$S) in Portland Cement[J]. Chin. Phys. Lett., 2018, 35(3): 076101
[6] Hu Cheng, Yan-Chun Li, Gong Li, Xiao-Dong Li. Structural Phase Transitions of ZnTe under High Pressure Using Experiments and Calculations[J]. Chin. Phys. Lett., 2016, 33(09): 076101
[7] Yan-Chun Hu, Ya-Wen Cui, Xian-Wei Wang, Yi-Pu Liu. Effect of Quench Treatment on Fe/Mo Order and Magnetic Properties of Double Perovskite Sr$_{2}$FeMoO$_{6}$[J]. Chin. Phys. Lett., 2016, 33(02): 076101
[8] LI Yan-Chun, LI Gong, LIN Chuan-Long, LI Xiao-Dong, LIU Jing. High-Pressure Phase Transitions of PbTe Using the First-Principles Calculations[J]. Chin. Phys. Lett., 2015, 32(01): 076101
[9] SHAO Xi. Indication of Low-Energy BC5 Structures[J]. Chin. Phys. Lett., 2010, 27(1): 076101
[10] GAO Feng, JIA Xiao-Peng, MA Hong-An, GUO Wei, LIU Xiao-Bing. Hetero-Epitaxial Diamond Single Crystal Growth on Surface of cBN Single Crystals at High Pressure and High Temperature[J]. Chin. Phys. Lett., 2008, 25(6): 076101
[11] ZHANG Yu-Feng, ZHANG Fan, GAO Qiao-Jun, YU Da-Peng, PENG Xiao-Fu, LIN Zeng-Dong. Synthesis of Nano-Crystalline Diamond Film in Hot Filament Chemical Vapour Deposition by Adding Ar[J]. Chin. Phys. Lett., 2001, 18(2): 076101
[12] ZHANG Fan, ZHANG Yu-Feng, GAO Qiao-Jun, ZHANG Shu-Lin, LIN Ting, PENG Xiao-Fu, LIN Zeng-Dong. Synthesis of Nano-crystalline Diamond Films[J]. Chin. Phys. Lett., 2000, 17(5): 076101
[13] WU Feng, ZHANG Shu-yuan, CHEN Zhi-wen, TAN Shun. Crystallization and Fractal Formation in Annealed Al/a-Ge Bilayer Films[J]. Chin. Phys. Lett., 1997, 14(10): 076101
[14] TAN Qi. Ordering and Reordering of Nanophase FeAl Intermetallics Synthesized by Mechanical Alloying[J]. Chin. Phys. Lett., 1996, 13(11): 076101
Full text