Chin. Phys. Lett.  2022, Vol. 39 Issue (5): 057501    DOI: 10.1088/0256-307X/39/5/057501
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Neutron Spectroscopy Evidence for a Possible Magnetic-Field-Induced Gapless Quantum-Spin-Liquid Phase in a Kitaev Material $\alpha$-RuCl$_3$
Xiaoxue Zhao1†, Kejing Ran2†, Jinghui Wang2, Song Bao1, Yanyan Shangguan1, Zhentao Huang1, Junbo Liao1, Bo Zhang1, Shufan Cheng1, Hao Xu1, Wei Wang3, Zhao-Yang Dong4, Siqin Meng5,6, Zhilun Lu5,7, Shin-ichiro Yano8, Shun-Li Yu1,9*, Jian-Xin Li1,9*, and Jinsheng Wen1,9*
1National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China
2School of Physical Science and Technology and ShanghaiTech Laboratory for Topological Physics, ShanghaiTech University, Shanghai 200031, China
3School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
4Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, China
5Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1D-14109 Berlin, Germany
6China Institute of Atomic Energy, Beijing 102413, China
7School of Engineering and the Built Environment, Edinburgh Napier University, Edinburgh EH10 5DT, United Kingdom
8National Synchrotron Radiation Research Center, Hsinchu 30077, China
9Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
Cite this article:   
Xiaoxue Zhao, Kejing Ran, Jinghui Wang et al  2022 Chin. Phys. Lett. 39 057501
Download: PDF(2478KB)   PDF(mobile)(2672KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract As one of the most promising Kitaev quantum-spin-liquid (QSL) candidates, $\alpha$-RuCl$_3$ has received a great deal of attention. However, its ground state exhibits a long-range zigzag magnetic order, which defies the QSL phase. Nevertheless, the magnetic order is fragile and can be completely suppressed by applying an external magnetic field. Here, we explore the evolution of magnetic excitations of $\alpha$-RuCl$_3$ under an in-plane magnetic field, by carrying out inelastic neutron scattering measurements on high-quality single crystals. Under zero field, there exist spin-wave excitations near the $M$ point and a continuum near the $\varGamma$ point, which are believed to be associated with the zigzag magnetic order and fractional excitations of the Kitaev QSL state, respectively. By increasing the magnetic field, the spin-wave excitations gradually give way to the continuous excitations. On the verge of the critical field $\mu_0H_{\rm c}=7.5$ T, the former ones vanish and only the latter ones are left, indicating the emergence of a pure QSL state. By further increasing the field strength, the excitations near the $\varGamma$ point become more intense. By following the gap evolution of the excitations near the $\varGamma$ point, we are able to establish a phase diagram composed of three interesting phases, including a gapped zigzag order phase at low fields, possibly gapless QSL phase near $\mu_0H_{\rm c}$, and gapped partially polarized phase at high fields. These results demonstrate that an in-plane magnetic field can drive $\alpha$-RuCl$_3$ into a long-sought QSL state near the critical field.
Received: 03 March 2022      Express Letter Published: 05 April 2022
PACS:  75.10.Kt (Quantum spin liquids, valence bond phases and related phenomena)  
  61.05.fg (Neutron scattering (including small-angle scattering))  
  75.30.Ds (Spin waves)  
TRENDMD:   
URL:  
http://cpl.iphy.ac.cn/10.1088/0256-307X/39/5/057501       OR      http://cpl.iphy.ac.cn/Y2022/V39/I5/057501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xiaoxue Zhao
Kejing Ran
Jinghui Wang
Song Bao
Yanyan Shangguan
Zhentao Huang
Junbo Liao
Bo Zhang
Shufan Cheng
Hao Xu
Wei Wang
Zhao-Yang Dong
Siqin Meng
Zhilun Lu
Shin-ichiro Yano
Shun-Li Yu
Jian-Xin Li
and Jinsheng Wen
[1] Kitaev A 2006 Ann. Phys. 321 2
[2] Savary L and Balents L 2017 Rep. Prog. Phys. 80 016502
[3] Takagi H, Takayama T, Jackeli G, Khaliullin G, and Nagler S E 2019 Nat. Rev. Phys. 1 264
[4] Wen J, Yu S L, Li S, Yu W, and Li J X 2019 npj Quantum Mater. 4 12
[5] Anderson P W 1973 Mater. Res. Bull. 8 153
[6] Balents L 2010 Nature 464 199
[7] Sears J A, Songvilay M, Plumb K W, Clancy J P, Qiu Y, Zhao Y, Parshall D, and Kim Y J 2015 Phys. Rev. B 91 144420
[8] Kim H S, Vijay S V, Catuneanu A, and Kee H Y 2015 Phys. Rev. B 91 241110
[9] Johnson R D, Williams S C, Haghighirad A A, Singleton J, Zapf V, Manuel P, Mazin I I, Li Y, Jeschke H O, Valentí R, and Coldea R 2015 Phys. Rev. B 92 235119
[10] Banerjee A, Bridges C A, Yan J Q, Aczel A A, Li L, Stone M B, Granroth G E, Lumsden M D, Yiu Y, Knolle J, Bhattacharjee S, Kovrizhin D L, Moessner R, Tennant D A, Mandrus D G, and Nagler S E 2016 Nat. Mater. 15 733
[11] Ritter C 2016 J. Phys.: Conf. Ser. 746 012060
[12] Plumb K W, Clancy J P, Sandilands L J, Shankar V V, Hu Y F, Burch K S, Kee H Y, and Kim Y J 2014 Phys. Rev. B 90 041112
[13] Kim H S and Kee H Y 2016 Phys. Rev. B 93 155143
[14] Yadav R, Bogdanov N A, Katukuri V M, Nishimoto S, van den Brink J, and Hozoi L 2016 Sci. Rep. 6 37925
[15] Ran K, Wang J, Wang W, Dong Z Y, Ren X, Bao S, Li S, Ma Z, Gan Y, Zhang Y, Park J T, Deng G, Danilkin S, Yu S L, Li J X, and Wen J 2017 Phys. Rev. Lett. 118 107203
[16] Wang W, Dong Z Y, Yu S L, and Li J X 2017 Phys. Rev. B 96 115103
[17] Sears J A, Chern L E, Kim S, Bereciartua P J, Francoual S, Kim Y B, and Kim Y J 2020 Nat. Phys. 16 837
[18] Sandilands L J, Tian Y, Plumb K W, Kim Y J, and Burch K S 2015 Phys. Rev. Lett. 114 147201
[19] Nasu J, Knolle J, Kovrizhin D L, Motome Y, and Moessner R 2016 Nat. Phys. 12 912
[20] Do S H, Park S Y, Yoshitake J, Nasu J, Motome Y, Kwon Y S, Adroja D T, Voneshen D J, Kim K, Jang T H, Park J H, Choi K Y, and Ji S 2017 Nat. Phys. 13 1079
[21] Hou Y S, Xiang H J, and Gong X G 2017 Phys. Rev. B 96 054410
[22] Lampen-Kelley P, Rachel S, Reuther J, Yan J Q, Banerjee A, Bridges C A, Cao H B, Nagler S E, and Mandrus D 2018 Phys. Rev. B 98 100403
[23] Eichstaedt C, Zhang Y, Laurell P, Okamoto S, Eguiluz A G, and Berlijn T 2019 Phys. Rev. B 100 075110
[24] Chaloupka J, Jackeli G, and Khaliullin G 2010 Phys. Rev. Lett. 105 027204
[25] Rau J G, Lee E K H, and Kee H Y 2014 Phys. Rev. Lett. 112 077204
[26] Chaloupka J and Khaliullin G 2015 Phys. Rev. B 92 024413
[27] Katukuri V M, Nishimoto S, Yushankhai V, Stoyanova A, Kandpal H, Choi S, Coldea R, Rousochatzakis I, Hozoi L, and van den Brink J 2014 New J. Phys. 16 013056
[28] Yamaji Y, Nomura Y, Kurita M, Arita R, and Imada M 2014 Phys. Rev. Lett. 113 107201
[29] Chun S H, Kim J W, Kim J, Zheng H, Stoumpos C C, Malliakas C D, Mitchell J F, Mehlawat K, Singh Y, Choi Y, Gog T, Al-Zein A, Sala M M, Krisch M, Chaloupka J, Jackeli G, Khaliullin G, and Kim B J 2015 Nat. Phys. 11 462
[30] Jackeli G and Khaliullin G 2009 Phys. Rev. Lett. 102 017205
[31] Winter S M, Tsirlin A A, Daghofer M, van den Brink J, Singh Y, Gegenwart P, and Valentí R 2017 J. Phys.: Condens. Matter 29 493002
[32] Winter S M, Li Y, Jeschke H O, and Valentí R 2016 Phys. Rev. B 93 214431
[33] Ronquillo D C, Vengal A, and Trivedi N 2019 Phys. Rev. B 99 140413
[34] Janssen L, Andrade E C, and Vojta M 2017 Phys. Rev. B 96 064430
[35] Kim B H, Sota S, Shirakawa T, Yunoki S, and Son Y W 2020 Phys. Rev. B 102 140402
[36] Gordon J S, Catuneanu A, Sørensen E S, and Kee H Y 2019 Nat. Commun. 10 2470
[37] Winter S M, Riedl K, Kaib D, Coldea R, and Valentí R 2018 Phys. Rev. Lett. 120 077203
[38] Janssen L and Vojta M 2019 J. Phys.: Condens. Matter 31 423002
[39] Chern L E, Kaneko R, Lee H Y, and Kim Y B 2020 Phys. Rev. Res. 2 013014
[40] Suzuki H, Liu H, Bertinshaw J et al. 2021 Nat. Commun. 12 4512
[41] Li H, Zhang H K, Wang J, Wu H Q, Gao Y, Qu D W, Liu Z X, Gong S S, and Li W 2021 Nat. Commun. 12 4007
[42] Kubota Y, Tanaka H, Ono T, Narumi Y, and Kindo K 2015 Phys. Rev. B 91 094422
[43] Zheng J, Ran K, Li T, Wang J, Wang P, Liu B, Liu Z X, Normand B, Wen J, and Yu W 2017 Phys. Rev. Lett. 119 227208
[44] Majumder M, Schmidt M, Rosner H, Tsirlin A A, Yasuoka H, and Baenitz M 2015 Phys. Rev. B 91 180401
[45] Balz C, Janssen L, Lampen-Kelley P, Banerjee A, Liu Y H, Yan J Q, Mandrus D G, Vojta M, and Nagler S E 2021 Phys. Rev. B 103 174417
[46] Sears J A, Zhao Y, Xu Z, Lynn J W, and Kim Y J 2017 Phys. Rev. B 95 180411
[47] Bachus S, Kaib D A S, Tokiwa Y, Jesche A, Tsurkan V, Loidl A, Winter S M, Tsirlin A A, Valentí R, and Gegenwart P 2020 Phys. Rev. Lett. 125 097203
[48] Wolter A U B, Corredor L T, Janssen L, Nenkov K, Schönecker S, Do S H, Choi K Y, Albrecht R, Hunger J, Doert T, Vojta M, and Büchner B 2017 Phys. Rev. B 96 041405
[49] Baek S H, Do S H, Choi K Y, Kwon Y S, Wolter A U B, Nishimoto S, van den Brink J, and Büchner B 2017 Phys. Rev. Lett. 119 037201
[50] Yu Y J, Xu Y, Ran K J, Ni J M, Huang Y Y, Wang J H, Wen J S, and Li S Y 2018 Phys. Rev. Lett. 120 067202
[51] Bachus S, Kaib D A S, Jesche A, Tsurkan V, Loidl A, Winter S M, Tsirlin A A, Valentí R, and Gegenwart P 2021 Phys. Rev. B 103 054440
[52] Widmann S, Tsurkan V, Prishchenko D A, Mazurenko V G, Tsirlin A A, and Loidl A 2019 Phys. Rev. B 99 094415
[53] Tanaka O, Mizukami Y, Harasawa R, Hashimoto K, Hwang K, Kurita N, Tanaka H, Fujimoto S, Matsuda Y, Moon E G, and Shibauchi T 2022 Nat. Phys. (accepted)
[54] Zhou X G, Li H, Matsuda Y H, Matsuo A, Li W, Kurita N, Kindo K, and Tanaka H 2022 arXiv:2201.04597 [cond-mat.str-el]
[55] Banerjee A, Lampen-Kelley P, Knolle J, Balz C, Aczel A A, Winn B, Liu Y, Pajerowski D, Yan J, Bridges C A, Savici A T, Chakoumakos B C, Lumsden M D, Tennant D A, Moessner R, Mandrus D G, and Nagler S E 2018 npj Quantum Mater. 3 8
[56] Balz C, Lampen-Kelley P, Banerjee A, Yan J, Lu Z, Hu X, Yadav S M, Takano Y, Liu Y, Tennant D A, Lumsden M D, Mandrus D, and Nagler S E 2019 Phys. Rev. B 100 060405
[57] Nagai Y, Jinno T, Yoshitake J, Nasu J, Motome Y, Itoh M, and Shimizu Y 2020 Phys. Rev. B 101 020414
[58] Janša N, Zorko A, Gomilšek M, Pregelj M, Krämer K W, Biner D, Biffin A, Rüegg C, and Klanjšek M 2018 Nat. Phys. 14 786
[59] Leahy I A, Pocs C A, Siegfried P E, Graf D, Do S H, Choi K Y, Normand B, and Lee M 2017 Phys. Rev. Lett. 118 187203
[60] Hentrich R, Wolter A U B, Zotos X, Brenig W, Nowak D, Isaeva A, Doert T, Banerjee A, Lampen-Kelley P, Mandrus D G, Nagler S E, Sears J, Kim Y J, Büchner B, and Hess C 2018 Phys. Rev. Lett. 120 117204
[61] Kasahara Y, Ohnishi T, Mizukami Y, Tanaka O, Ma S, Sugii K, Kurita N, Tanaka H, Nasu J, Motome Y, Shibauchi T, and Matsuda Y 2018 Nature 559 227
[62] Kasahara Y, Sugii K, Ohnishi T, Shimozawa M, Yamashita M, Kurita N, Tanaka H, Nasu J, Motome Y, Shibauchi T, and Matsuda Y 2018 Phys. Rev. Lett. 120 217205
[63] Czajka P, Gao T, Hirschberger M, Lampen-Kelley P, Banerjee A, Yan J, Mandrus D G, Nagler S E, and Ong N P 2021 Nat. Phys. 17 915
[64] Yokoi T, Ma S, Kasahara Y, Kasahara S, Shibauchi T, Kurita N, Tanaka H, Nasu J, Motome Y, Hickey C, Trebst S, and Matsuda Y 2021 Science 373 568
[65] Bruin J A N, Claus R R, Matsumoto Y, Kurita N, Tanaka H, and Takagi H 2022 Nat. Phys. (accepted)
[66] Czajka P, Gao T, Hirschberger M, Lampen-Kelley P, Banerjee A, Quirk N, Mandrus D G, Nagler S E, and Ong N P 2022 arXiv:2201.07873 [cond-mat.str-el]
[67] Sahasrabudhe A, Kaib D A S, Reschke S, German R, Koethe T C, Buhot J, Kamenskyi D, Hickey C, Becker P, Tsurkan V, Loidl A, Do S H, Choi K Y, Grüninger M, Winter S M, Wang Z, Valentí R, and van Loosdrecht P H M 2020 Phys. Rev. B 101 140410
[68] Wellm C, Zeisner J, Alfonsov A, Wolter A U B, Roslova M, Isaeva A, Doert T, Vojta M, Büchner B, and Kataev V 2018 Phys. Rev. B 98 184408
[69] Little A, Wu L, Lampen-Kelley P, Banerjee A, Patankar S, Rees D, Bridges C A, Yan J Q, Mandrus D, Nagler S E, and Orenstein J 2017 Phys. Rev. Lett. 119 227201
[70] Wang Z, Reschke S, Hüvonen D, Do S H, Choi K Y, Gensch M, Nagel U, Rõõm T, and Loidl A 2017 Phys. Rev. Lett. 119 227202
[71] Wu L, Little A, Aldape E E, Rees D, Thewalt E, Lampen-Kelley P, Banerjee A, Bridges C A, Yan J Q, Boone D, Patankar S, Goldhaber-Gordon D, Mandrus D, Nagler S E, Altman E, and Orenstein J 2018 Phys. Rev. B 98 094425
[72] Wulferding D, Choi Y, Do S H, Lee C H, Lemmens P, Faugeras C, Gallais Y, and Choi K Y 2020 Nat. Commun. 11 1
[73] Aoyama T, Hasegawa Y, Kimura S, Kimura T, and Ohgushi K 2017 Phys. Rev. B 95 245104
[74] Modic K A, McDonald R D, Ruff J P C, Bachmann M D, Lai Y, Palmstrom J C, Graf D, Chan M K, Balakirev F F, Betts J B, Boebinger G S, Schmidt M, Lawler J M, Sokolov D A, Moll P J W, Ramshaw B J, and Shekhter A 2021 Nat. Phys. 17 240
[75] Ponomaryov A N, Schulze E, Wosnitza J, Lampen-Kelley P, Banerjee A, Yan J Q, Bridges C A, Mandrus D G, Nagler S E, Kolezhuk A K, and Zvyagin S A 2017 Phys. Rev. B 96 241107
[76] Ponomaryov A N, Zviagina L, Wosnitza J, Lampen-Kelley P, Banerjee A, Yan J Q, Bridges C A, Mandrus D G, Nagler S E, and Zvyagin S A 2020 Phys. Rev. Lett. 125 037202
[77] Gass S, Cônsoli P M, Kocsis V, Corredor L T, Lampen-Kelley P, Mandrus D G, Nagler S E, Janssen L, Vojta M, Büchner B, and Wolter A U B 2020 Phys. Rev. B 101 245158
[78] Schönemann R, Imajo S, Weickert F, Yan J, Mandrus D G, Takano Y, Brosha E L, Rosa P F S, Nagler S E, Kindo K, and Jaime M 2020 Phys. Rev. B 102 214432
[79] Maksimov P A and Chernyshev A L 2020 Phys. Rev. Res. 2 033011
[80] Banerjee A, Yan J, Knolle J, Bridges C A, Stone M B, Lumsden M D, Mandrus D G, Tennant D A, Moessner R, and Nagler S E 2017 Science 356 1055
[81] Ran K, Wang J, Bao S, Cai Z, Shangguan Y, Ma Z, Wang W, Dong Z Y, Čermák P, Schneidewind A, Meng S, Lu Z, Yu S L, Li J X, and Wen J 2022 Chin. Phys. Lett. 39 027501
[82] Wu C M, Deng G, Gardner J S, Vorderwisch P, Li W H, Yano S, Peng J C, and Imamovic E 2016 J. Instrum. 11 P10009
[83] Ma Z, Dong Z Y, Wang J, Zheng S, Ran K, Bao S, Cai Z, Shangguan Y, Wang W, Boehm M, Steffens P, Regnault L P, Wang X, Su Y, Yu S L, Liu J M, Li J X, and Wen J 2021 Phys. Rev. B 104 224433
[84] Li H, Qu D W, Zhang H K, Jia Y Z, Gong S S, Qi Y, and Li W 2020 Phys. Rev. Res. 2 043015
Related articles from Frontiers Journals
[1] Kejing Ran, Jinghui Wang, Song Bao, Zhengwei Cai, Yanyan Shangguan, Zhen Ma, Wei Wang, Zhao-Yang Dong, P. Čermák, A. Schneidewind, Siqin Meng, Zhilun Lu, Shun-Li Yu, Jian-Xin Li, and Jinsheng Wen. Evidence for Magnetic Fractional Excitations in a Kitaev Quantum-Spin-Liquid Candidate $\alpha$-RuCl$_3$[J]. Chin. Phys. Lett., 2022, 39(2): 057501
[2] Yuan Wei, Xiaoyan Ma, Zili Feng, Yongchao Zhang, Lu Zhang, Huaixin Yang, Yang Qi, Zi Yang Meng, Yan-Cheng Wang, Youguo Shi, and Shiliang Li. Nonlocal Effects of Low-Energy Excitations in Quantum-Spin-Liquid Candidate Cu$_3$Zn(OH)$_6$FBr[J]. Chin. Phys. Lett., 2021, 38(9): 057501
[3] Jianting Ji, Mengjie Sun, Yanzhen Cai, Yimeng Wang, Yingqi Sun, Wei Ren, Zheng Zhang, Feng Jin, and Qingming Zhang. Rare-Earth Chalcohalides: A Family of van der Waals Layered Kitaev Spin Liquid Candidates[J]. Chin. Phys. Lett., 2021, 38(4): 057501
[4] J.-J. Wen, Y. S. Lee. The Search for the Quantum Spin Liquid in Kagome Antiferromagnets[J]. Chin. Phys. Lett., 2019, 36(5): 057501
[5] Zili Feng, Wei Yi, Kejia Zhu, Yuan Wei, Shanshan Miao, Jie Ma, Jianlin Luo, Shiliang Li, Zi Yang Meng, Youguo Shi. From Claringbullite to a New Spin Liquid Candidate Cu$_3$Zn(OH)$_6$FCl[J]. Chin. Phys. Lett., 2019, 36(1): 057501
[6] Weiwei Liu, Zheng Zhang, Jianting Ji, Yixuan Liu, Jianshu Li, Xiaoqun Wang, Hechang Lei, Gang Chen, Qingming Zhang. Rare-Earth Chalcogenides: A Large Family of Triangular Lattice Spin Liquid Candidates[J]. Chin. Phys. Lett., 2018, 35(11): 057501
[7] Zili Feng, Zheng Li, Xin Meng, Wei Yi, Yuan Wei, Jun Zhang, Yan-Cheng Wang, Wei Jiang, Zheng Liu, Shiyan Li, Feng Liu, Jianlin Luo, Shiliang Li, Guo-qing Zheng, Zi Yang Meng, Jia-Wei Mei, Youguo Shi. Gapped Spin-1/2 Spinon Excitations in a New Kagome Quantum Spin Liquid Compound Cu$_3$Zn(OH)$_6$FBr [J]. Chin. Phys. Lett., 2017, 34(7): 057501
Viewed
Full text


Abstract