Chin. Phys. Lett.  2022, Vol. 39 Issue (5): 057302    DOI: 10.1088/0256-307X/39/5/057302
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Unusual Band Splitting and Superconducting Gap Evolution with Sulfur Substitution in FeSe
Yuanyuan Yang1, Qisi Wang2, Shaofeng Duan1, Hongliang Wo2, Chaozhi Huang1, Shichong Wang1, Lingxiao Gu1, Dong Qian1, Jun Zhao2,3, and Wentao Zhang1*
1Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
2State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
3Institute of Nanoelectronics and Quantum Computing, Fudan University, Shanghai 200433, China
Cite this article:   
Yuanyuan Yang, Qisi Wang, Shaofeng Duan et al  2022 Chin. Phys. Lett. 39 057302
Download: PDF(1243KB)   PDF(mobile)(1348KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract High-resolution angle-resolved photoemission measurements were taken on FeSe$_{1-x}$S$_x$ ($x$ = 0, 0.04, and 0.08) superconductors. With an ultrahigh energy resolution of 0.4 meV, unusual two hole bands near the Brillouin-zone center, which was possibly a result of additional symmetry breaking, were identified in all the sulfur-substituted samples. In addition, in both of the hole bands highly anisotropic superconducting gaps with resolution limited nodes were evidenced. We find that the larger superconducting gap on the outer hole band is reduced linearly to the nematic transition temperature while the gap on the inner hole is nearly S-substitution independent. Our observations strongly suggest that the superconducting gap increases with enhanced nematicity although the superconducting transition temperature is not only governed by the pairing strength, demonstrating strong constraints on theories in the FeSe family.
Received: 18 March 2022      Express Letter Published: 23 April 2022
PACS:  74.20.Rp (Pairing symmetries (other than s-wave))  
  74.25.Jb (Electronic structure (photoemission, etc.))  
  74.70.Xa (Pnictides and chalcogenides)  
TRENDMD:   
URL:  
http://cpl.iphy.ac.cn/10.1088/0256-307X/39/5/057302       OR      http://cpl.iphy.ac.cn/Y2022/V39/I5/057302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yuanyuan Yang
Qisi Wang
Shaofeng Duan
Hongliang Wo
Chaozhi Huang
Shichong Wang
Lingxiao Gu
Dong Qian
Jun Zhao
and Wentao Zhang
[1] Lebègue S 2007 Phys. Rev. B 75 035110
[2] Kreisel A, Hirschfeld P J, and Andersen B M 2020 Symmetry 12 1402
[3] Fradkin E, Kivelson S A, Lawler M J, Eisenstein J P, and Mackenzie A P 2010 Annu. Rev. Condens. Matter Phys. 1 153
[4] Nie L, Sun K, Ma W, Song D, Zheng L, Liang Z, Wu P, Yu F, Li J, Shan M, Zhao D, Li S, Kang B, Wu Z, Zhou Y, Liu K, Xiang Z, Ying J, Wang Z, Wu T, and Chen X 2022 Nature 604 59
[5] Rubio-Verdú C, Turkel S, Song Y, Klebl L, Samajdar R, Scheurer M S, Venderbos J W F, Watanabe K, Taniguchi T, Ochoa H, Xian L, Kennes D M, Fernandes R M, Rubio N, and Pasupathy A N 2022 Nat. Phys. 18 196
[6] Paglione J and Greene R L 2010 Nat. Phys. 6 645
[7] Chuang T M, Allan M P, Lee J, Xie Y, Ni N, Bud'ko S L, Boebinger G S, Canfield P C, and Davis J C 2010 Science 327 181
[8] Bohmer A E, Arai T, Hardy F, Hattori T, Iye T, Wolf T, von Lohneysen H, Ishida K, and Meingast C 2015 Phys. Rev. Lett. 114 027001
[9] Yi M, Lu D, Chu J H, Analytis J G, Sorini A P, Kemper A F, Moritz B, Mo S K, Moore R G, Hashimoto M, Lee W S, Hussain Z, Devereaux T P, Fisher I R, and Shen Z X 2011 Proc. Natl. Acad. Sci. USA 108 6878
[10] Fu M, Torchetti D A, Imai T, Ning F L, Yan J Q, and Sefat A S 2012 Phys. Rev. Lett. 109 247001
[11] Lu X, Park J T, Zhang R, Luo H, Nevidomskyy A H, Si Q, and Dai P 2014 Science 345 657
[12] Hu J and Xu C 2012 Physica C 481 215
[13] Si Q, Yu R, and Abrahams E 2016 Nat. Rev. Mater. 1 16017
[14] Hsu F C, Luo J Y, Yeh K W, Chen T K, Huang T W, Wu P M, Lee Y C, Huang Y L, Chu Y Y, Yan D C, and Wu M K 2008 Proc. Natl. Acad. Sci. USA 105 14262
[15] McQueen T M, Williams A J, Stephens P W, Tao J, Zhu Y, Ksenofontov V, Casper F, Felser C, and Cava R J 2009 Phys. Rev. Lett. 103 057002
[16] Bendele M, Amato A, Conder K, Elender M, Keller H, Klauss H H, Luetkens H, Pomjakushina E, Raselli A, and Khasanov R 2010 Phys. Rev. Lett. 104 087003
[17] Baek S H, Efremov D V, Ok J M, Kim J S, van den Brink J, and Buechner B 2015 Nat. Mater. 14 210
[18] Coldea A I, Blake S F, Kasahara S, Haghighirad A A, Watson M D, Knafo W, Choi E S, McCollam A, Reiss P, Yamashita T, Bruma M, Speller S C, Matsuda Y, Wolf T, Shibauchi T, and Schofield A J 2019 npj Quantum Mater. 4 2
[19] Abdel-Hafiez M, Zhang Y Y, Cao Z Y, Duan C G, Karapetrov G, Pudalov V M, Vlasenko V A, Sadakov A V, Knyazev D A, Romanova T A, Chareev D A, Volkova O S, Vasiliev A N, and Chen X J 2015 Phys. Rev. B 91 165109
[20] Wang L, Hardy F, Wolf T, Adelmann P, Fromknecht R, Schweiss P, and Meingast C 2017 Phys. Status Solidi B 254 1600153
[21] Watson M D, Kim T K, Haghighirad A A, Blake S F, Davies N R, Hoesch M, Wolf T, and Coldea A I 2015 Phys. Rev. B 92 121108(R)
[22] Reiss P, Watson M D, Kim T K, Haghighirad A A, Woodruff D N, Bruma M, Clarke S J, and Coldea A I 2017 Phys. Rev. B 96 121103(R)
[23] Xu H C, Niu X H, Xu D F, Jiang J, Yao Q, Chen Q Y, Song Q, Abdel-Hafiez M, Chareev D A, Vasiliev A N, Wang Q S, Wo H L, Zhao J, Peng R, and Feng D L 2016 Phys. Rev. Lett. 117 157003
[24] Tetsuo H, Katsuya I, Yuhki K, Tadashi M, Tatsuya W, Shigeru K, Takasada S, and Yuji M 2018 Sci. Adv. 4 eaar6419
[25] Li C, Wu X, Wang L, Liu D, Cai Y, Wang Y, Gao Q, Song C, Huang J, Dong C, Liu J, Ai P, Luo H, Yin C H, Liu G, Huang Y, Wang Q, Jia X, Zhang F, Zhang S, Yang F, Wang Z, Peng Q, Xu Z, Shi Y, Hu J, Xiang T, Zhao L, and Zhou X J 2020 Phys. Rev. X 10 031033
[26] Yang Y Y, Tang T W, Duan S F, Zhou C C, Hao D X, and Zhang W T 2019 Rev. Sci. Instrum. 90 063905
[27] Wang Q, Shen Y, Pan B, Hao Y, Ma M, Zhou F, Steffens P, Schmalzl K, Forrest T R, Abdel-Hafiez M, Chen X, Chareev D A, Vasiliev A N, Bourges P, Sidis Y, Cao H, and Zhao J 2016 Nat. Mater. 15 159
[28] Watson M D, Kim T K, Haghighirad A A, Davies N R, McCollam A, Narayanan A, Blake S F, Chen Y L, Ghannadzadeh S, Schofield A J, Hoesch M, Meingast C, Wolf T, and Coldea A I 2015 Phys. Rev. B 91 155106
[29] Gerber S, Yang S L, Zhu D, Soifer H, Sobota J A, Rebec S, Lee J J, Jia T, Moritz B, Jia C, Gauthier A, Li Y, Leuenberger D, Zhang Y, Chaix L, Li W, Jang H, Lee J S, Yi M, Dakovski G L, Song S, Glownia J M, Nelson S, Kim K W, Chuang Y D, Hussain Z, Moore R G, Devereaux T P, Lee W S, Kirchmann P S, and Shen Z X 2017 Science 357 71
[30] Sandvik A W, Scalapino D J, and Bickers N E 2004 Phys. Rev. B 69 094523
[31] Song C L, Wang Y L, Cheng P, Jiang Y P, Li W, Zhang T, Li Z, He K, Wang L L, Jia J F, Hung H H, Wu C J, Ma X C, Chen X, and Xue Q K 2011 Science 332 1410
[32] Watashige T, Tsutsumi Y, Hanaguri T, Kohsaka Y, Kasahara S, Furusaki A, Sigrist M, Meingast C, Wolf T, Löhneysen H V, Shibauchi T, and Matsuda Y 2015 Phys. Rev. X 5 031022
[33] Sprau P O, Kostin A, Kreisel A, Böhmer A E, Taufour V, Canfield P C, Mukherjee S, Hirschfeld P J, Andersen B M, and Séamus D J C 2017 Science 357 75
[34] Liu D, Li C, Huang J, Lei B, Wang L, Wu X, Shen B, Gao Q, Zhang Y, Liu X, Hu Y, Xu Y, Liang A, Liu J, Ai P, Zhao L, He S, Yu L, Liu G, Mao Y, Dong X, Jia X, Zhang F, Zhang S, Yang F, Wang Z, Peng Q, Shi Y, Hu J, Xiang T, Chen X, Xu Z, Chen C, and Zhou X J 2018 Phys. Rev. X 8 031033
[35] Rhodes L C, Watson M D, Haghighirad A A, Evtushinsky D V, Eschrig M, and Kim T K 2018 Phys. Rev. B 98 180503(R)
[36] Hashimoto T, Ota Y, Yamamoto H Q, Suzuki Y, Shimojima T, Watanabe S, Chen C, Kasahara S, Matsuda Y, Shibauchi T, Okazaki K, and Shin S 2018 Nat. Commun. 9 282
[37] Kogan V G, Martin C, and Prozorov R 2009 Phys. Rev. B 80 014507
[38] Kang B L, Shi M Z, Li S J, Wang H H, Zhang Q, Zhao D, Li J, Song D W, Zheng L X, Nie L P, Wu T, and Chen X H 2020 Phys. Rev. Lett. 125 097003
[39] Miao H, Brito W H, Yin Z P, Zhong R D, Gu G D, Johnson P D, Dean M P M, Choi S, Kotliar G, Ku W, Wang X C, Jin C Q, Wu S F, Qian T, and Ding H 2018 Phys. Rev. B 98 020502(R)
[40] Kreisel A, Andersen B M, Sprau P O, Kostin A, Davis J C S, and Hirschfeld P J 2017 Phys. Rev. B 95 174504
[41] Benfatto L, Valenzuela B, and Fanfarillo L 2018 npj Quantum Mater. 3 56
[42] Kreisel A, Andersen B M, and Hirschfeld P J 2018 Phys. Rev. B 98 214518
[43] Yu R, Zhu J X, and Si Q 2018 Phys. Rev. Lett. 121 227003
[44] Li J, Lei B, Zhao D, Nie L P, Song D W, Zheng L X, Li S J, Kang B L, Luo X G, Wu T, and Chen X H 2020 Phys. Rev. X 10 011034
[45] Zhang P, Yaji K, Hashimoto T, Ota Y, Kondo T, Okazaki K, Wang Z, Wen J, Gu G D, Ding H, and Shin S 2018 Science 360 182
[46] Xing J, Lin H, Li Y, Li S, Zhu X, Yang H, and Wen H H 2016 Phys. Rev. B 93 104520
[47] Weng K C and Hu C D 2016 Sci. Rep. 6 29919
[48] Wang Q, Shen Y, Pan B, Zhang X, Ikeuchi K, Iida K, Christianson A D, Walker H C, Adroja D T, Abdel-Hafiez M, Chen X, Chareev D A, Vasiliev A N, and Zhao J 2016 Nat. Commun. 7 12182
Related articles from Frontiers Journals
[1] Yu Dong, Yangyang Lv, Zuyu Xu, M. Abdel-Hafiez, A. N. Vasiliev, Haipeng Zhu, Junfeng Wang, Liang Li, Wanghao Tian, Wei Chen, Song Bao, Jinghui Wang, Yueshen Wu, Yulong Huang, Shiliang Li, Jie Yuan, Kui Jin, Labao Zhang, Huabing Wang, Shun-Li Yu, Jinsheng Wen, Jian-Xin Li, Jun Li, and Peiheng Wu. Observation of a Ubiquitous ($\pi, \pi$)-Type Nematic Superconducting Order in the Whole Superconducting Dome of Ultra-Thin BaFe$_{2-x}$Ni$_x$As$_2$ Single Crystals[J]. Chin. Phys. Lett., 2021, 38(9): 057302
[2] Jianan Chu, Teng Wang, Han Zhang, Yixin Liu, Jiaxin Feng, Zhuojun Li, Da Jiang, Gang Mu, Zengfeng Di, and Xiaoming Xie. Gap Structure of 12442-Type KCa$_2$(Fe$_{1-x}$Co$_{x}$)$_4$As$_{4}$F$_2$ ($x$ = 0, 0.1) Revealed by Temperature Dependence of Lower Critical Field[J]. Chin. Phys. Lett., 2020, 37(12): 057302
[3] Li-Han Chen, Da Wang, Yi Zhou, Qiang-Hua Wang. Superconductivity, Pair Density Wave, and Néel Order in Cuprates[J]. Chin. Phys. Lett., 2020, 37(1): 057302
[4] Xi Zhang, Tianchuang Luo, Xiyao Hu, Jing Guo, Gongchang Lin, Yuehui Li, Yanzhao Liu, Xiaokang Li, Jun Ge, Ying Xing, Zengwei Zhu, Peng Gao, Liling Sun, Jian Wang. Superconductivity and Fermi Surface Anisotropy in Transition Metal Dichalcogenide NbTe$_{2}$[J]. Chin. Phys. Lett., 2019, 36(5): 057302
[5] Hui Meng, Huan Zhang, Wan-Sheng Wang, Qiang-Hua Wang. Thermal conductivity in near-nodal superconductors[J]. Chin. Phys. Lett., 2018, 35(12): 057302
[6] Ming-Qiang Ren, Ya-Jun Yan, Tong Zhang, Dong-Lai Feng. Possible Nodeless Superconducting Gaps in Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$ and YBa$_2$Cu$_3$O$_{7-x}$ Revealed by Cross-Sectional Scanning Tunneling Spectroscopy[J]. Chin. Phys. Lett., 2016, 33(12): 057302
[7] Ye Xiong. Fano Resonances Can Provide Two Criteria to Distinguish Majorana Bound States from Other Candidates in Experiments[J]. Chin. Phys. Lett., 2016, 33(05): 057302
[8] Yu-Jia Long, Ling-Xiao Zhao, Pei-Pei Wang, Huai-Xin Yang, Jian-Qi Li, Hai Zi, Zhi-An Ren, Cong Ren, Gen-Fu Chen. Single Crystal Growth and Physical Property Characterization of Non-centrosymmetric Superconductor PbTaSe$_2$[J]. Chin. Phys. Lett., 2016, 33(03): 057302
[9] ZHU Jun, WANG Zhao-Sheng, WANG Zhen-Yu, HOU Xing-Yuan, LUO Hui-Qian, LU Xing-Ye, LI Chun-Hong, SHAN Lei, WEN Hai-Hu, REN Cong. Doping Induced Gap Anisotropy in Iron-Based Superconductors: a Point-Contact Andreev Reflection Study of BaFe2−xNixAs2 Single Crystals[J]. Chin. Phys. Lett., 2015, 32(07): 057302
[10] GONG Xin-Xin, ZHOU He-Xin, XU Peng-Chao, YUE Di, ZHU Kai, JIN Xiao-Feng, TIAN He, ZHAO Ge-Jian, CHEN Ting-Yong. Possible p-Wave Superconductivity in Epitaxial Bi/Ni Bilayers[J]. Chin. Phys. Lett., 2015, 32(06): 057302
[11] WU Xian-Xin, LE Cong-Cong, YUAN Jing, FAN Heng, HU Jiang-Ping. Magnetism in Quasi-One-Dimensional A2Cr3As3 (A=K,Rb) Superconductors[J]. Chin. Phys. Lett., 2015, 32(5): 057302
[12] LI Hai-Chao, XIANG Yuan-Yuan, WANG Qiang-Hua. Consistency between Itinerant and Local-Moment Pictures for Superconductivity in Alkaline Iron Selenide Superconductors[J]. Chin. Phys. Lett., 2014, 31(06): 057302
[13] HAN Qiang, LIU Jia, ZHANG Dan-Bo, WANG Zi-Dan. An Exotic Type of Fulde–Ferrel–Larkin–Ovchinnikov States in Spin-Orbit Coupled Condensates[J]. Chin. Phys. Lett., 2014, 31(05): 057302
[14] WANG Da, LU Hong-Yan, WANG Qiang-Hua. The Finite Temperature Effect on Josephson Junction between an s-Wave Superconductor and an s±-Wave Superconductor[J]. Chin. Phys. Lett., 2013, 30(7): 057302
[15] Hamidreza Emamipour, Jafar Emamipour. Zero-Bias Conductance versus Potential Strength of Interface in Ferromagnetic Superconductors[J]. Chin. Phys. Lett., 2012, 29(3): 057302
Viewed
Full text


Abstract