Chin. Phys. Lett.  2022, Vol. 39 Issue (4): 048101    DOI: 10.1088/0256-307X/39/4/048101
Epitaxial Growth and Characteristics of Nonpolar $a$-Plane InGaN Films with Blue-Green-Red Emission and Entire In Content Range
Jianguo Zhao1,2*, Kai Chen1, Maogao Gong1, Wenxiao Hu1, Bin Liu1*, Tao Tao1, Yu Yan1, Zili Xie1, Yuanyuan Li2, Jianhua Chang2, Xiaoxuan Wang4, Qiannan Cui4, Chunxiang Xu4, Rong Zhang1,3, and Youdou Zheng
1Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
2School of Electronics and Information Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
3Xiamen University, Xiamen 361000, China
4State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
Cite this article:   
Jianguo Zhao, Kai Chen, Maogao Gong et al  2022 Chin. Phys. Lett. 39 048101
Download: PDF(860KB)   PDF(mobile)(955KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Nonpolar (11$\bar{2}$0) plane In$_{x}$Ga$_{1- x}$N epilayers comprising the entire In content ($x$) range were successfully grown on nanoscale GaN islands by metal-organic chemical vapor deposition. The structural and optical properties were studied intensively. It was found that the surface morphology was gradually smoothed when $x$ increased from 0.06 to 0.33, even though the crystalline quality was gradually declined, which was accompanied by the appearance of phase separation in the In$_{x}$Ga$_{1- x}$N layer. Photoluminescence wavelengths of 478 and 674 nm for blue and red light were achieved for $x$ varied from 0.06 to 0.33. Furthermore, the corresponding average lifetime ($\tau_{1/e}$) of carriers for the nonpolar InGaN film was decreased from 406 ps to 267 ps, indicating that a high-speed modulation bandwidth can be expected for nonpolar InGaN-based light-emitting diodes. Moreover, the bowing coefficient ($b$) of the (11$\bar{2}$0) plane InGaN was determined to be 1.91 eV for the bandgap energy as a function of $x$.
Received: 27 December 2021      Editors' Suggestion Published: 15 March 2022
PACS:  81.15.Gh (Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))  
  78.20.-e (Optical properties of bulk materials and thin films)  
  68.55.-a (Thin film structure and morphology)  
URL:       OR
E-mail this article
E-mail Alert
Articles by authors
Jianguo Zhao
Kai Chen
Maogao Gong
Wenxiao Hu
Bin Liu
Tao Tao
Yu Yan
Zili Xie
Yuanyuan Li
Jianhua Chang
Xiaoxuan Wang
Qiannan Cui
Chunxiang Xu
Rong Zhang
and Youdou Zheng
[1] Liu B, Chen D, Lu H, Tao T, Zhuang Z, Shao Z, Xu W, Ge H, Zhi T, Ren F, Ye J, Xie Z, and Zhang R 2020 Adv. Mater. 32 1904354
[2] Zhou X, Tian P, Sher C W, Wu J, Liu H, Liu R, and Kuo H C 2020 Prog. Quantum Electron. 71 100263
[3] Lu S, Li J, Huang K, Liu G, Zhou Y, Cai D, Zhang R, and Kang J 2021 Nanoscale Res. Lett. 16 99
[4] Meng W, Xu F, Yu Z, Tao T, Shao L, Liu L, Li T, Wen K, Wang J, He L, Sun L, Li W, Ning H, Dai N, Qin F, Tu X, Pan D, He S, Li D, Zheng Y, Lu Y, Liu B, Zhang R, Shi Y, and Wang X 2021 Nat. Nanotechnol. 16 1231
[5] Chen S W H, Huang Y M, Chang Y H, Lin Y, Liou F J, Hsu Y C, Song J, Choi J, Chow C W, Lin C C, Horng R H, Chen Z, Han J, Wu T, and Kuo H C 2020 ACS Photon. 7 2228
[6] Zhou Y, Wei Y, Hu F, Hu J, Zhao Y, Zhang J, Jiang F, and Chi N 2020 Opt. Express 28 2302
[7] Khoury M, Li H, Li P, Chow Y C, Bonef B, Zhang H, Wong M S, Pinna S, Song J, Choi J, Speck J S, Nakamura S, and DenBaars S P 2020 Nano Energy 67 104236
[8] Maur M A D, Pecchia A, Penazzi G, Rodrigues W, and Di Carlo A 2016 Phys. Rev. Lett. 116 027401
[9] Zhuang Z, Iida D, Velazquez-Rizo M, and Ohkawa K 2021 IEEE Electron Device Lett. 42 1029
[10] Zhang S, Zhang J, Gao J, Wang X, Zheng C, Zhang M, Wu X, Xu L, Ding J, Quan Z, and Jiang F 2020 Photon. Res. 8 1671
[11] Bi Z, Lenrick F, Colvin J, Gustafsson A, Hultin O, Nowzari A, Lu T, Wallenberg R, Timm R, Mikkelsen A, Ohlsson B J, Storm K, Monemar B, and Samuelson L 2019 Nano Lett. 19 2832
[12] Iida D, Zhuang Z, Kirilenko P, Velazquez-Rizo M, Najmi M A, and Ohkawa K 2020 Appl. Phys. Lett. 116 162101
[13] Zhuang Z, Iida D, and Ohkawa K 2020 Appl. Phys. Lett. 116 173501
[14] Zhuang Z, Iida D, Kirilenko P, Velazquez-Rizo M, and Ohkawa K 2020 Opt. Express 28 12311
[15] Pasayat S S, Gupta C, Wong M S, Ley R, Gordon M J, DenBaars S P, Nakamura S, Keller S, and Mishra U K 2020 Appl. Phys. Express 14 011004
[16] Huang D M, Zhang J Y, Wang J H, Wei W Q, Wang Z H, Wang T, and Zhang J J 2021 Chin. Phys. Lett. 38 068101
[17] Zheng C, Zhao D, Cai X, Huang W, Meng F, Zhang Q, Tang L, Hu X, Gu L, Ji S H, and Chen X 2020 Chin. Phys. Lett. 37 087401
[18] Bernardini F, Fiorentini V, and Vanderbilt D 1997 Phys. Rev. B 56 R10024
[19] Fiorentini V, Bernardini F, Sala F D, Di Carlo A, and Lugli P 1999 Phys. Rev. B 60 8849
[20] Liu X, Lin R, Chen H, Zhang S, Qian Z, Zhou G, Chen X, Zhou X, Zheng L, Liu R, and Tian P 2019 ACS Photon. 6 3186
[21] Waltereit P, Brandt O, Trampert A, Grahn H, Menniger J, Ramsteiner M, Reiche M, and Ploog K 2000 Nature 406 865
[22] Zhao J, Pan J, Liu B, Tao T, Chen D, Long X, Feng Z C, and Chang J 2021 IEEE Photon. J. 13 2300107
[23] Sun Q, Yerino C D, Ko T S, Cho Y S, Lee I H, Han J, and Coltrin M E 2008 J. Appl. Phys. 104 093523
[24] Li H, Khoury M, Bonef B, Alhassan A I, Mughal A J, Azimah E, Samsudin M E A, De Mierry P, Nakamura S, Speck J S, and DenBaars S P 2017 ACS Appl. Mater. & Interfaces 9 36417
[25] Wang Q, Yuan G, Liu W, Zhao S, Liu Z, Chen Y, Wang J, and Li J 2019 J. Mater. Sci. 54 7780
[26] Gong M G, Xing K, Zhang Y, Liu B, Tao T, Xie Z L, Zhang R, and Zheng Y D 2020 Appl. Phys. Express 13 091002
[27] Zhao J, Zhang X, Dai Q, Wang N, Wu Z, Wang S, and Cui Y 2017 Appl. Phys. Express 10 011002
[28] Zhao J, Zhang X, He J, Chen S, Wu Z, Fan A, Dai Q, Feng Z C, and Cui Y 2018 ACS Photon. 5 1903
[29] Ketzer F A, Horenburg P, Henning P, Korn E R, Bremers H, Rossow U, and Hangleiter A 2019 Appl. Phys. Lett. 114 052101
[30] Zhao J, Zhang X, Wu Z, Dai Q, Wang N, He J, Chen S, Feng Z C, and Cui Y 2017 J. Alloys Compd. 729 992
[31] Jiang F, Zhang J, Xu L, Ding J, Wang G, Wu X, Wang X, Mo C, Quan Z, Guo X, Zheng C, Pan S, and Liu J 2019 Photon. Res. 7 144
[32] Krost A, Bläsing J, Lünenbürger M, Protzmann H, and Heuken M 1999 Appl. Phys. Lett. 75 689
[33] Niu X, Stringfellow G B, and Liu F 2011 Appl. Phys. Lett. 99 213102
[34] Meng Y, Wang L, Zhao G, Li F, Li H, Yang S, and Wang Z 2018 Phys. Status Solidi A 215 1800455
[35] Chichibu S F, Uedono A, Onuma T, Haskell B A, Chakraborty A, Koyama T, Fini P T, Keller S, Denbaars S P, Speck J S, Mishra U K, Nakamura S, Yamaguchi S, Kamiyama S, Amano H, Akasaki I, Han J, and Sota T 2006 Nat. Mater. 5 810
[36] Zhao J, Zhang X, Fan A, Chen S, He J, Pan J, Chen D, Tian M, Feng Z C, Chang J, Liu Q, and Ge J 2020 Jpn. J. Appl. Phys. 59 010909
[37]Schubert E F 2006 Light Emitting Diodes 2nd edn (Cambridge: Cambridge University Press)
[38] Liu B, Luo W, Zhang R, Zou Z, Xie Z, Li Z, Chen D, Xiu X, Han P, and Zheng Y 2010 Phys. Status Solidi C 7 1817
Related articles from Frontiers Journals
[1] Zhibin Zhang, Jiajie Qi, Mengze Zhao, Nianze Shang, Yang Cheng, Ruixi Qiao, Zhihong Zhang, Mingchao Ding, Xingguang Li, Kehai Liu, Xiaozhi Xu, Kaihui Liu, Can Liu, and Muhong Wu. Scrolled Production of Large-Scale Continuous Graphene on Copper Foils[J]. Chin. Phys. Lett., 2020, 37(10): 048101
[2] Yu Zhao, Yan Teng, Jing-Jun Miao, Qi-Hua Wu, Jing-Jing Gao, Xin Li, Xiu-Jun Hao, Ying-Chun Zhao, Xu Dong, Min Xiong, Yong Huang. Mid-Infrared InAs/GaSb Superlattice Planar Photodiodes Fabricated by Metal–Organic Chemical Vapor Deposition *[J]. Chin. Phys. Lett., 0, (): 048101
[3] Yu Zhao, Yan Teng, Jing-Jun Miao, Qi-Hua Wu, Jing-Jing Gao, Xin Li, Xiu-Jun Hao, Ying-Chun Zhao, Xu Dong, Min Xiong, Yong Huang. Mid-Infrared InAs/GaSb Superlattice Planar Photodiodes Fabricated by Metal–Organic Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2020, 37(6): 048101
[4] Yi-Yi Gu, Yi-Fan Wang, Jing Xia, Xiang-Min Meng. Chemical Vapor Deposition of Two-Dimensional PbS Nanoplates for Photodetection[J]. Chin. Phys. Lett., 2020, 37(4): 048101
[5] Xin Li, Yu Zhao, Min Xiong, Qi-Hua Wu, Yan Teng, Xiu-Jun Hao, Yong Huang, Shuang-Yuan Hu, Xin Zhu. High-Quality InSb Grown on Semi-Insulting GaAs Substrates by Metalorganic Chemical Vapor Deposition for Hall Sensor Application[J]. Chin. Phys. Lett., 2019, 36(1): 048101
[6] Shu-Zhe Mei, Quan Wang, Mei-Lan Hao, Jian-Kai Xu, Hong-Ling Xiao, Chun Feng, Li-Juan Jiang, Xiao-Liang Wang, Feng-Qi Liu, Xian-Gang Xu, Zhan-Guo Wang. Flow Field and Temperature Field in GaN-MOCVD Reactor Based on Computational Fluid Dynamics Modeling[J]. Chin. Phys. Lett., 2018, 35(9): 048101
[7] Ying-Xi Niu, Xiao-Yan Tang, Ren-Xu Jia, Ling Sang, Ji-Chao Hu, Fei Yang, Jun-Min Wu, Yan Pan, Yu-Ming Zhang. Influence of Triangle Structure Defect on the Carrier Lifetime of the 4H-SiC Ultra-Thick Epilayer[J]. Chin. Phys. Lett., 2018, 35(7): 048101
[8] Ze-Yang Ren, Jin-Feng Zhang, Jin-Cheng Zhang, Sheng-Rui Xu, Chun-Fu Zhang, Kai Su, Yao Li, Yue Hao. Growth and Characterization of the Laterally Enlarged Single Crystal Diamond Grown by Microwave Plasma Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2018, 35(7): 048101
[9] Zhi-Gang Wang, Fei Pang. Poisoning of MoO$_{3}$ Precursor on Monolayer MoS$_{2}$ Nanosheets Growth by Tellurium-Assisted Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2017, 34(8): 048101
[10] Bo-Ting Liu, Ping Ma, Xi-Lin Li, Jun-Xi Wang, Jin-Min Li. Influence of Al Preflow Time on Surface Morphology and Quality of AlN and GaN on Si (111) Grown by MOCVD[J]. Chin. Phys. Lett., 2017, 34(5): 048101
[11] Bo-Ting Liu, Shi-Kuan Guo, Ping Ma, Jun-Xi Wang, Jin-Min Li. High-Quality and Strain-Relaxation GaN Epilayer Grown on SiC Substrates Using AlN Buffer and AlGaN Interlayer[J]. Chin. Phys. Lett., 2017, 34(4): 048101
[12] Yang Zhang, Qing Wang, Xiao-Bin Zhang, Na Peng, Zhen-Qi Liu, Bing-Zhen Chen, Shan-Shan Huang, Zhi-Yong Wang. Application of AlGaInP with Sb Incorporation in Lattice-Matched 5-Junction Tandem Solar Cells[J]. Chin. Phys. Lett., 2017, 34(2): 048101
[13] Ying Zhao, Sheng-Rui Xu, Zhi-Yu Lin, Jin-Cheng Zhang, Teng Jiang, Meng-Di Fu, Jia-Duo Zhu, Qin Lu, Yue Hao. C-Implanted N-Polar GaN Films Grown by Metal Organic Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2016, 33(12): 048101
[14] Guo-Cai Dong, D. V. Baarle, J. Frenken, Qi-Wen Tang. Graphene/Rh(111) Structure Studied Using In-Situ Scanning Tunneling Microscopy[J]. Chin. Phys. Lett., 2016, 33(11): 048101
[15] Jia-Min Gong, Quan Wang, Jun-Da Yan, Feng-Qi Liu, Chun Feng, Xiao-Liang Wang, Zhan-Guo Wang. Comparison of GaN/AlGaN/AlN/GaN HEMTs Grown on Sapphire with Fe-Modulation-Doped and Unintentionally Doped GaN Buffer: Material Growth and Device Fabrication[J]. Chin. Phys. Lett., 2016, 33(11): 048101
Full text