Chin. Phys. Lett.  2022, Vol. 39 Issue (4): 047502    DOI: 10.1088/0256-307X/39/4/047502
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Tunable Spin Hall Magnetoresistance in All-Antiferromagnetic Heterostructures
Lin Huang, Yongjian Zhou, Tingwen Guo, Feng Pan, and Cheng Song*
Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
Cite this article:   
Lin Huang, Yongjian Zhou, Tingwen Guo et al  2022 Chin. Phys. Lett. 39 047502
Download: PDF(1076KB)   PDF(mobile)(1183KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate the spin Hall magnetoresistance (SMR) in all-antiferromagnetic heterostructures $\alpha$-Fe$_{2}$O$_{3}$/Cr$_{2}$O$_{3}$ with Pt contacts. When the temperature is ultralow ($ < $ 50 K), the spin current generated in the Pt layer cannot be transmitted through Cr$_{2}$O$_{3}$ ($t = 4$ nm), and the SMR is near zero. Meanwhile, when the temperature is higher than the spin fluctuation temperature $T_{\rm F}$ ($\approx $ 50 K) of Cr$_{2}$O$_{3}$ and lower than its Néel temperature $T_{\rm N}$ ($\approx $ 300 K), the spin current goes through the Cr$_{2}$O$_{3}$ layer and is reflected at the $\alpha$-Fe$_{2}$O$_{3}$/Cr$_{2}$O$_{3}$ interface; an antiferromagnetic (negative) SMR is observed. As temperature increases higher than $T_{\rm N}$, paramagnetic (positive) SMR mainly arises from the spin current reflection at the Cr$_{2}$O$_{3}$/Pt interface. The transition temperatures from negative to positive SMR are enhanced with increasing Cr$_{2}$O$_{3}$ layer thickness, accompanied by the absence of SMR signals when $t = 10$ nm. Such a tunable SMR builds a bridge between spin transport and structures. It also enriches antiferromagnetic spintronics.
Received: 01 February 2022      Editors' Suggestion Published: 28 March 2022
PACS:  75.50.Ee (Antiferromagnetics)  
  85.75.-d (Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)  
  75.70.Cn (Magnetic properties of interfaces (multilayers, superlattices, heterostructures))  
TRENDMD:   
URL:  
http://cpl.iphy.ac.cn/10.1088/0256-307X/39/4/047502       OR      http://cpl.iphy.ac.cn/Y2022/V39/I4/047502
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Lin Huang
Yongjian Zhou
Tingwen Guo
Feng Pan
and Cheng Song
[1] Hellman F et al. 2017 Rev. Mod. Phys. 89 025006
[2] Nakayama H, Althammer M, Chen Y T, Uchida K, Kajiwara Y, Kikuchi D, Ohtani T, Geprägs S, Opel M, Takahashi S, Gross R, Bauer G E W, Goennenwein S T B, and Saitoh E 2013 Phys. Rev. Lett. 110 206601
[3] Hou D, Qiu Z, Barker J, Sato K, Yamamoto K, Vélez S, Gomez-Perez J M, Hueso L E, Casanova F, and Saitoh E 2017 Phys. Rev. Lett. 118 147202
[4] Zhao Z P, Guo Q, Chen F H, Zhang K W, and Jiang Y 2021 Rare Met. 40 2862
[5] Chen Y, Takahashi S, Nakayama H, Althammer M, Goennenwein S T B, Saitoh E, and Bauer G E W 2013 Phys. Rev. B 87 144411
[6] Zhang X, Luo T, Hu X, Guo J, Lin G, Li Y, Liu Y, Zhang X, Luo T, Hu X, Guo J, Lin G, Li Y, Liu Y, Li X, Ge J, Xing Y, Zhu Z, Gao P, Sun L, and Wang J 2019 Chin. Phys. Lett. 36 057402
[7] Shang T, Zhan Q F, Yang H L, Zuo Z H, Xie Y L, Liu L P, Zhang S L, Zhang Y, Li H H, Wang B M, Wu Y H, Zhang S, and Li R W 2016 Appl. Phys. Lett. 109 032410
[8] Baldrati L, Ross A, Niizeki T, Schneider C, Ramos R, Cramer J, Gomonay O, Filianina M, Savchenko T, Heinze D, Kleibert A, Saitoh E, Sinova J, and Kläui M 2018 Phys. Rev. B 98 024422
[9] Lin W and Chien C L 2017 Phys. Rev. Lett. 118 067202
[10] Dong B, Baldrati L, Schneider C, Niizeki T, Ramos R, Ross A, Cramer J, Saitoh E, and Kläui M 2019 Appl. Phys. Lett. 114 102405
[11] Qiu Z, Hou D, Barker J, Yamamoto K, Gomonay O, and Saitoh E 2018 Nat. Mater. 17 577
[12] Guo C Y, Wan C H, He W Q, Zhao M K, Yan Z R, Xing Y W, Wang X, Tang P, Liu Y Z, Zhang S, Liu Y W, and Han X F 2020 Nat. Electron. 3 304
[13] Morin F J 1950 Phys. Rev. 78 819
[14] Zhou Y J, Chen X Z, Zhou X F, Bai H, Chen R Y, Pan F, and Song C 2020 J. Appl. Phys. 127 163904
[15] Fischer J, Althammer M, Vlietstra N, Huebl H, Goennenwein S T B, Gross R, Geprägs S, and Opel M 2020 Phys. Rev. Appl. 13 014019
[16] Kosub T, Kopte M, Radu F, Schmidt O G, and Makarov D 2015 Phys. Rev. Lett. 115 097201
[17] Kosub T, Kopte M, H€U R, Appel P, Shields B, Maletinsky P, Hübner R, Liedke M O, Fassbender J, Schmidt O G, and Makarov D 2017 Nat. Commun. 8 13985
[18] Moriyama T, Shiratsuchi Y, Iino T, Aono H, Suzuki M, Nakamura T, Kotani Y, Nakatani R, Nakamura K, and Ono T 2020 Phys. Rev. Appl. 13 034052
[19]Morrish A H 1994 Canted Antiferromagnetism: Hematite (Singapore: World Scientific)
[20] Ross A, Lebrun R, Ulloa C, Grave D A, Kay A, Baldrati L, Kronast F, Valencia S, Rothschild A, and Kläui M 2020 Phys. Rev. B 102 094415
[21] Schlitz R, Kosub T, Thomas A, Fabretti S, Nielsch K, Makarovand D, and Goennenwein S T B 2018 Appl. Phys. Lett. 112 132401
[22] Corliss L M, Hastings J M, Nathans R, and Shirane G 1965 J. Appl. Phys. 36 1099
[23] Pisarev R V, Krichevtsov B B, and Pavlov V V 1991 Phase Transit. 37 63
[24] Huang L, Zhou Y, Qiu H S, Guo T, Pan F, Jin B, and Song C 2021 Appl. Phys. Lett. 119 212401
[25] Cheng Y, Yu S S, Ahmed A S, Zhu M L, Rao Y, Ghazisaeidi M, Hwang J, and Yang F Y 2019 Phys. Rev. B 100 220408
[26] Chen X, Shi S, Shi G, Fan X, Song C, Zhou X, Bai H, Liao L, Zhou Y, Zhang H, Li A, Chen Y, Han X, Jiang S, Zhu Z, Wu H, Wang X, Xue D, Yang H, and Pan F 2021 Nat. Mater. 20 800
[27] Chen S, Li D, Cui B, Xi L, Si M, Yang D, and Xue D 2018 J. Phys. D 51 095001
[28] Althammer M, Meyer S, Nakayama H, Schreier M, Altmannshofer S, Weiler M, Huebl H, Geprägs S, Opel M, Gross R, Meier D, Klewe C, Kuschel T, Schmalhorst J M, Reiss G, Shen L, Gupta A, Chen Y T, Bauer G E W, Saitoh E, and Goennenwein S T B 2013 Phys. Rev. B 87 224401
[29] Aqeel A, Vlietstra N, Heuver J A, Bauer G E W, Noheda B, van Wees B J, and Palstra T T M 2015 Phys. Rev. B 92 224410
[30] Wang Y, Zhu D, Yang Y, Lee K, Mishra R, Go G, Oh S H, Kim D H, Cai K, Liu E, Pollard S D, Shi S, Lee J, Teo K L, Wu Y, Lee K J, and Yang H 2019 Science 366 1125
Related articles from Frontiers Journals
[1] Chunyan Liao, Yahui Jin, Wei Zhang, Ziming Zhu, and Mingxing Chen. Fe$_{2}$Ga$_{2}$S$_{5}$ as a 2D Antiferromagnetic Semiconductor[J]. Chin. Phys. Lett., 2020, 37(10): 047502
[2] Yu-Jie Yuan, Cheng-He Li, Shang-Jie Tian, He-Chang Lei, Xiao Zhang. Tuning of Magnetic Properties of $\alpha$-RuCl$_{3}$ Single Crystal by Cr Doping *[J]. Chin. Phys. Lett., 0, (): 047502
[3] Yu-Jie Yuan, Cheng-He Li, Shang-Jie Tian, He-Chang Lei, Xiao Zhang. Tuning of Magnetic Properties of $\alpha$-RuCl$_{3}$ Single Crystal by Cr Doping[J]. Chin. Phys. Lett., 2020, 37(6): 047502
[4] Huan-Cheng Chen, Zhe-Feng Lou, Yu-Xing Zhou, Qin Chen, Bin-Jie Xu, Shui-Jin Chen, Jian-Hua Du, Jin-Hu Yang, Hang-Dong Wang, Ming-Hu Fang. Negative Magnetoresistance in Antiferromagnetic Topological Insulator EuSn$_2$As$_2$$^{*}$[J]. Chin. Phys. Lett., 2020, 37(4): 047502
[5] Qi Wang, Qianheng Du, Cedomir Petrovic, Hechang Lei. Physical Properties of Half-Heusler Antiferromagnet MnPtSn Single Crystal[J]. Chin. Phys. Lett., 2020, 37(2): 047502
[6] Xu-Peng Zhao, Da-Hai Wei, Jun Lu, Si-Wei Mao, Zhi-Feng Yu, Jian-Hua Zhao. Tunneling Anisotropic Magnetoresistance in $L1_{0}$-MnGa Based Antiferromagnetic Perpendicular Tunnel Junction[J]. Chin. Phys. Lett., 2018, 35(8): 047502
[7] Pan Liu, Wei-Hua Wang, Wei-Chao Wang, Ya-Hui Cheng, Feng Lu, Hui Liu. D-Type Anti-Ferromagnetic Ground State in Ca$_{2}$Mn$_{2}$O$_{5}$[J]. Chin. Phys. Lett., 2017, 34(2): 047502
[8] CHEN Xu-Liang, SONG Wen-Hai, YANG Zhao-Rong. Field-Induced Structural Transition in the Bond Frustrated Spinel ZnCr2Se4[J]. Chin. Phys. Lett., 2015, 32(12): 047502
[9] MALIK Muhammad-Imran, SUN Ying, DENG Si-Hao, SHI Ke-Wen, HU Peng-Wei, WANG Cong. Nitrogen-Induced Change of Magnetic Properties in Antiperovskite-Type Carbide: Mn3InC[J]. Chin. Phys. Lett., 2015, 32(06): 047502
[10] CHU Li-Hua, WANG Cong, SUN Ying, LI Mei-Cheng, WAN Zi-Pei, WANG Yu, DOU Shang-Yi, CHU Yue. Doping Effect of Co at Ag Sites in Antiperovskite Mn3AgN Compounds[J]. Chin. Phys. Lett., 2015, 32(4): 047502
[11] LIU Zhao-Sen, YANG Cui-Hong, GU Bin, MA Rong, LI Qing-Fang. The Application of a New Simulation Approach to Ferrimagnetic Nanowires[J]. Chin. Phys. Lett., 2013, 30(9): 047502
[12] XU Yin-Jie, ZHAO Hui, CHEN Yu-Guang, YAN Yong-Hong. Spin-Peierls Instability in the Ferromagnetic Heisenberg Ladder[J]. Chin. Phys. Lett., 2013, 30(3): 047502
[13] YUAN Xue-Yong, XUE Xiao-Bo, SI Li-Fang, DU Jun, XU Qing-Yu. Exchange Bias in Polycrystalline BiFe1-xMnxO3/Ni81Fe19 Bilayers[J]. Chin. Phys. Lett., 2012, 29(9): 047502
[14] CHEN Feng-Liang,ZHOU Shi-Ming**. Magnetoresistance Effect in Antiferromagnet-Based Nanogranular Films[J]. Chin. Phys. Lett., 2012, 29(4): 047502
[15] LIU Zhao-Sen**, Sechovský, Vladimir, Divi&#, Martin . Magnetic Properties of a Rare-Earth Antiferromagnetic Nanoparticle Investigated with a Quantum Simulation Model[J]. Chin. Phys. Lett., 2011, 28(6): 047502
Viewed
Full text


Abstract