Chin. Phys. Lett.  2022, Vol. 39 Issue (4): 047403    DOI: 10.1088/0256-307X/39/4/047403
Local Density of States Modulated by Strain in Marginally Twisted Bilayer Graphene
Jia-Jun Ma1,2†, Zhen-Yu Wang2†, Shui-Gang Xu3,4, Yu-Xiang Gao1,2, Yu-Yang Zhang1,2,5, Qing Dai6, Xiao Lin1,2,5, Shi-Xuan Du1,2,5, Jindong Ren6*, and Hong-Jun Gao1,2,5*
1Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2School of Physical Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
3Key Laboratory for Quantum Materials of Zhejiang Province, School of Science, Westlake University, Hangzhou 310024, China
4Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
5CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
6CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nano-technology, National Center for Nanoscience and Technology, Beijing 100190, China
Cite this article:   
Jia-Jun Ma, Zhen-Yu Wang, Shui-Gang Xu et al  2022 Chin. Phys. Lett. 39 047403
Download: PDF(936KB)   PDF(mobile)(1019KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract In marginally twisted bilayer graphene, the Moiré pattern consists of the maximized AB (BA) stacking regions, minimized AA stacking regions and triangular networks of domain walls. Here we realize the strain-modulated electronic structures of marginally twisted bilayer graphene by scanning tunneling microscopy/spectroscopy and density functional theory (DFT) calculations. The experimental data show four peaks near the Fermi energy at the AA regions. DFT calculations indicate that the two new peaks closer to the Fermi level may originate from the intrinsic heterostrain and the electric field implemented by back gate is likely to account for the observed shift of the four peaks. Furthermore, the $dI/dV$ map across Moiré patterns with different strain strengths exhibits a distinct appearance of the helical edge states.
Received: 16 February 2022      Published: 28 March 2022
PACS:  07.79.Cz (Scanning tunneling microscopes)  
  81.05.ue (Graphene)  
  74.78.Fk (Multilayers, superlattices, heterostructures)  
URL:       OR
E-mail this article
E-mail Alert
Articles by authors
Jia-Jun Ma
Zhen-Yu Wang
Shui-Gang Xu
Yu-Xiang Gao
Yu-Yang Zhang
Qing Dai
Xiao Lin
Shi-Xuan Du
Jindong Ren
and Hong-Jun Gao
[1] Choi Y, Kemmer J, Peng Y, Thomson A, Arora H, Polski R, Zhang Y, Ren H, Alicea J, Refael G, Von Oppen F, Watanabe K, Taniguchi T, and Nadj-Perge S 2019 Nat. Phys. 15 1174
[2] Jiang Y, Lai X, Watanabe K, Taniguchi T, Haule K, Mao J, and Andrei E Y 2019 Nature 573 91
[3] Kerelsky A, Mcgilly L J, Kennes D M, Xian L, Yankowitz M, Chen S, Watanabe K, Taniguchi T, Hone J, Dean C, Rubio A, and Pasupathy A N 2019 Nature 572 95
[4] Xie Y, Lian B, Jack B, Liu X, Chiu C L, Watanabe K, Taniguchi T, Bernevig B A, and Yazdani A 2019 Nature 572 101
[5] Andrei E Y and Macdonald A H 2020 Nat. Mater. 19 1265
[6] Zhang X, Pan G, Zhang Y, Kang J, and Meng Z Y 2021 Chin. Phys. Lett. 38 077305
[7] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, and Jarillo-Herrero P 2018 Nature 556 43
[8] Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C, and Jarillo-Herrero P 2018 Nature 556 80
[9] Sharpe A L, Fox E J, Barnard A W, Finney J, Watanabe K, Taniguchi T, Kastner M A, and Goldhaber-Gordon D 2019 Science 365 605
[10] Shen C, Ying J, Liu L, Liu J, Li N, Wang S, Tang J, Zhao Y, Chu Y, Watanabe K, Taniguchi T, Yang R, Shi D, Qu F, Lu L, Yang W, and Zhang G 2021 Chin. Phys. Lett. 38 047301
[11] Huang S, Kim K, Efimkin D K, Lovorn T, Taniguchi T, Watanabe K, Macdonald A H, Tutuc E, and Leroy B J 2018 Phys. Rev. Lett. 121 037702
[12] Verbakel J D, Yao Q, Sotthewes K, and Zandvliet H J W 2021 Phys. Rev. B 103 165134
[13] Yao Q, Chen X, Van Bremen R, Sotthewes K, and Zandvliet H J W 2020 Appl. Phys. Lett. 116 011602
[14] Du J, Lyu B, Shan W, Chen J, Zhou X, Xie J, Deng A, Hu C, Liang Q, Xie G, Li X, Luo W, and Shi Z 2021 Chin. Phys. Lett. 38 056301
[15] Mao J, Milovanovic S P, Andelkovic M, Lai X, Cao Y, Watanabe K, Taniguchi T, Covaci L, Peeters F M, Geim A K, Jiang Y, and Andrei E Y 2020 Nature 584 215
[16] Edelberg D, Kumar H, Shenoy V, Ochoa H, and Pasupathy A N 2020 Nat. Phys. 16 1097
[17] Ren J, Guo H, Pan J, Zhang Y Y, Wu X, Luo H G, Du S, Pantelides S T, and Gao H J 2014 Nano Lett. 14 4011
[18] Ren J, Guo H, Pan J, Zhang Y F, Yang Y, Wu X, Du S, Ouyang M, and Gao H J 2017 Phys. Rev. Lett. 119 176806
[19] Zhang S, Song Y, Li H, Li J M, Qian K, Liu C, Wang J O, Qian T, Zhang Y Y, Lu J C, Ding H, Lin X, Pan J, Du S X, and Gao H J 2020 Chin. Phys. Lett. 37 068103
[20] Xu S G, Berdyugin A I, Kumaravadivel P, Guinea F, Krishna K R, Bandurin D A, Morozov S V, Kuang W, Tsim B, Liu S, Edgar J H, Grigorieva I V, Fal'ko V I, Kim M, and Geim A K 2019 Nat. Commun. 10 4008
[21] Yoo H, Engelke R, Carr S, Fang S, Zhang K, Cazeaux P, Sung S H, Hovden R, Tsen A W, Taniguchi T, Watanabe K, Yi G C, Kim M, Luskin M, Tadmor E B, Kaxiras E, and Kim P 2019 Nat. Mater. 18 448
[22] Liu X, Chiu C L, Lee J Y, Farahi G, Watanabe K, Taniguchi T, Vishwanath A, and Yazdani A 2021 Nat. Commun. 12 2732
[23] Brihuega I, Mallet P, Gonzalez-Herrero H, De Trambly L G, Ugeda M M, Magaud L, Gomez-Rodriguez J M, Yndurain F, and Veuillen J Y 2012 Phys. Rev. Lett. 109 196802
[24] Kresse G and Furthmuller J 1996 Comput. Mater. Sci. 6 15
[25] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[26] Blochl P E 1994 Phys. Rev. B 50 17953
[27] Perdew J P, Burke K, and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[28] Grimme S, Antony J, Ehrlich S, and Krieg H 2010 J. Chem. Phys. 132 154104
[29] Shi H, Zhan Z, Qi Z, Huang K, Veen E V, Silva-Guillen J A, Zhang R, Li P, Xie K, Ji H, Katsnelson M I, Yuan S, Qin S, and Zhang Z 2020 Nat. Commun. 11 371
[30] San-Jose P and Prada E 2013 Phys. Rev. B 88 121408
[31] Zhang F, Macdonald A H, and Mele E J 2013 Proc. Natl. Acad. Sci. USA 110 10546
[32] Gui G, Li J, and Zhong J 2008 Phys. Rev. B 78 075435
Related articles from Frontiers Journals
[1] GUO Xiao-Dong, DONG Li, GUO Yang, SHAN Xin-Yan, ZHAO Ji-Min, LU Xing-Hua. Detecting Larmor Precession of a Single Spin with a Spin-Polarized Tunneling Current[J]. Chin. Phys. Lett., 2013, 30(1): 047403
[2] LI Bin, ZENG Chang-Gan, WANG Hai-Qian, WANG Bing, HOU Jian-Guo,. Scanning Tunnelling Microscope Tip-Induced Reconstruction on Si(111)√3 x√3 R30°-Ag Surface [J]. Chin. Phys. Lett., 2001, 18(2): 047403
[3] ZHANG Geng-Min . Scanning Tunnelling Microscopy Observation on 10,12-Tricosadiynoic Acid Monolayers Deposited by Schaefer’s Method [J]. Chin. Phys. Lett., 2001, 18(1): 047403
[4] WANG Fu-he, YANG Jin-long, LI Jia-ming,. Theoretical Study of Extraction of a Single Al Atom from Al(111) Surface by Scanning Tunneling Microscopy W Tip[J]. Chin. Phys. Lett., 1998, 15(11): 047403
[5] YANG Hai-tao, TAO Hong-jie, ZHAO Zhong-xian. Charge-Density Wave in 2H-NbSe2 Observed by Scanning Tunneling Microscopy at 4.3K[J]. Chin. Phys. Lett., 1998, 15(2): 047403
Full text