Chin. Phys. Lett.  2022, Vol. 39 Issue (4): 047401    DOI: 10.1088/0256-307X/39/4/047401
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
A New Superconductor Parent Compound NaMn$_{6}$Bi$_{5}$ with Quasi-One-Dimensional Structure and Lower Antiferromagnetic-Like Transition Temperatures
Ying Zhou1,2†, Long Chen1,2†, Gang Wang1,2,3*, Yu-Xin Wang1,2, Zhi-Chuan Wang1,2, Cong-Cong Chai1,2, Zhong-Nan Guo4, Jiang-Ping Hu1,2,3*, and Xiao-Long Chen1,2,3*
1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2University of Chinese Academy of Sciences, Beijing 100049, China
3Songshan Lake Materials Laboratory, Dongguan 523808, China
4Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
Cite this article:   
Ying Zhou, Long Chen, Gang Wang et al  2022 Chin. Phys. Lett. 39 047401
Download: PDF(1725KB)   PDF(mobile)(1834KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Mn-based superconductors are very rare and their superconductivity has only been reported in three-dimensional MnP and quasi-one-dimensional KMn$_{6}$Bi$_{5}$ and RbMn$_{6}$Bi$_{5}$ with [Mn$_{6}$Bi$_{5}$]$^{-}$ columns under high pressures. Here we report the synthesis, magnetism, electrical resistivity, and specific heat capacity of the newly discovered quasi-one-dimensional NaMn$_{6}$Bi$_{5}$. Compared with other $A$Mn$_{6}$Bi$_{5}$ ($A$ = K, Rb, and Cs), NaMn$_{6}$Bi$_{5}$ has abnormal Bi–Bi bond lengths and two antiferromagnetic-like transitions at 47.3 K and 51.8 K. Anisotropic resistivity and low-temperature non-Fermi liquid behavior are observed. Heat capacity measurement reveals that the Sommerfeld coefficient for NaMn$_{6}$Bi$_{5}$ is unusually large. Using first-principles calculations, an unusual enhancement of density of states near the Fermi level is demonstrated for NaMn$_{6}$Bi$_{5}$. The features make NaMn$_{6}$Bi$_{5}$ a more suitable platform to explore the interplay of magnetism and superconductivity.
Received: 05 February 2022      Editors' Suggestion Published: 09 March 2022
PACS:  74.70.Dd (Ternary, quaternary, and multinary compounds)  
  74.25.Fy  
  74.25.Ha (Magnetic properties including vortex structures and related phenomena)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
TRENDMD:   
URL:  
http://cpl.iphy.ac.cn/10.1088/0256-307X/39/4/047401       OR      http://cpl.iphy.ac.cn/Y2022/V39/I4/047401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ying Zhou
Long Chen
Gang Wang
Yu-Xin Wang
Zhi-Chuan Wang
Cong-Cong Chai
Zhong-Nan Guo
Jiang-Ping Hu
and Xiao-Long Chen
[1] Bednorz J G and Müller K A 1986 Z. Phys. B: Condens. Matter 64 189
[2]Zhao Z X, Chen L Q, Cui C G, Huang Y Z, Liu J X, Chen G H, Li S L, Guo S Q, and He Y Y 1987 Sci. Bull. 32 522
[3] Lee P A, Nagaosa N, and Wen X G 2006 Rev. Mod. Phys. 78 17
[4] Chen L H, Wang D, Zhou Y, and Wang Q H 2020 Chin. Phys. Lett. 37 017403
[5] Kamihara Y, Hiramatsu H, Hirano M, Kawamura R, Yanagi H, Kamiya T, and Hosono H 2006 J. Am. Chem. Soc. 128 10012
[6] Kamihara Y, Watanabe T, Hirano M, and Hosono H 2008 J. Am. Chem. Soc. 130 3296
[7] Chen X H, Wu T, Wu G, Liu R H, Chen H, and Fang D F 2008 Nature 453 761
[8] Steglich F, Aarts J, Bredl C D, Lieke W, Meschede D, Franz W, and Schäfer H 1979 Phys. Rev. Lett. 43 1892
[9] Stewart G R 1984 Rev. Mod. Phys. 56 755
[10] Alireza P L, Ko Y C, Gillett J, Petrone C M, Cole J M, Lonzarich G G, and Sebastian S E 2009 J. Phys.: Condens. Matter 21 012208
[11] Akbari A, Eremin I, and Thalmeier P 2011 Phys. Rev. B 84 134513
[12] Marty K, Christianson A D, Wang C H, Matsuda M, Cao H, VanBebber L H, Zarestky J L, Singh D J, Sefat A S, and Lumsden M D 2011 Phys. Rev. B 83 060509
[13] Chen L, Cao C, Chen H X, Guo J G, Ma J, Hu J P, and Wang G 2021 Phys. Rev. B 103 134509
[14] Gao Q, Zhao L, Hu C, Yan H T, Chen H, Cai Y Q, Li C, Ai P, Liu J, Huang J W, Rong H T, Song C Y, Yin C H, Wang Q Y, Huang Y, Liu G D, Xu Z Y, and Zhou X J 2020 Chin. Phys. Lett. 37 087402
[15] Wu W, Cheng J G, Matsubayashi K, Kong P P, Lin F K, Jin C Q, Wang N L, Uwatoko Y, and Luo J L 2014 Nat. Commun. 5 5508
[16] Bao J K, Liu J Y, Ma C W, Meng Z H, Tang Z T, Sun Y L, Zhai H F, Jiang H, Bai H, Feng C M, Xu Z A, and Cao G H 2015 Phys. Rev. X 5 011013
[17] Tang Z T, Bao J K, Liu Y, Sun Y L, Ablimit A, Zhai H F, Jiang H, Feng C M, Xu Z A, and Cao G H 2015 Phys. Rev. B 91 020506
[18] Tang Z T, Bao J K, Wang Z, Bai H, Jiang H, Liu Y, Zhai H F, Feng C M, Xu Z A, and Cao G H 2015 Sci. Chin. Mater. 58 16
[19] Dahal A, Gunasekera J, and Singh D K 2017 Phys. Status Solidi RRL 11 1700211
[20] Cheng J G, Matsubayashi K, Wu W, Sun J P, Lin F K, Luo J L, and Uwatoko Y 2015 Phys. Rev. Lett. 114 117001
[21] Matsuda M, Ye F, Dissanayake S E, Cheng J G, Chi S, Ma J, Zhou H D, Yan J Q, Kasamatsu S, Sugino O, Kato T, Matsubayashi K, Okada T, and Uwatoko Y 2016 Phys. Rev. B 93 100405(R)
[22] Li D F, Lee K, Wang B Y, Osada M, Crossley S, Lee H R, Cui Y, Hikita Y, and Hwang H Y 2019 Nature 572 624
[23] Gu Q Q and Wen H H 2022 Innovation 3 100202
[24] Bao J K, Tang Z T, Jun H J, Liu J Y, Liu Y, Li L, Li Y K, Xu Z A, Feng C M, Chen H J, Chung D Y, Dravid V P, Cao G H, and Kanatzidis M G 2018 J. Am. Chem. Soc. 140 4391
[25] Chen L, Zhao L L, Qiu X L, Zhang Q H, Liu K, Lin Q S, and Wang G 2021 Inorg. Chem. 60 12941
[26] Liu Z Y, Dong Q X, Yang P T, Shan P F, Wang B S, Sun J P, Uwatoko Y, Chen G F, Dong X L, Zhao Z X, and Cheng J G 2022 arXiv:2201.06053 [cond-mat.supr-con]
[27] Yang P T, Dong Q X, Shan P F, Liu Z Y, Sun J P, Dun Z L, Uwatoko Y, Chen G F, Wang B S, and Cheng J G 2022 arXiv:2201.13336 [cond-mat.supr-con]
[28] Canfield P C, Kong T, Kaluarachchi U S, and Jo N H 2016 Philos. Mag. 96 84
[29]Rodríguez-Carvajal J 2001 FullProf (CEA/Saclay, France)
[30] Dolomanov O V, Bourhis L J, Gildea R J, Howard J A, and Puschmann H 2009 J. Appl. Crystallogr. 42 339
[31] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[32] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[33] Perdew J P, Burke K, and Ernzerhof M 1997 Phys. Rev. Lett. 78 1396
[34] Kresse G and Furthmuller J 1996 Comput. Mater. Sci. 6 15
[35] Wang W J, Sun R, He S J, Jia Z Y, Su C L, Li Y, and Wang Z C 2021 2D Mater. 8 015027
[36] Johnston D C 2010 Adv. Phys. 59 803
[37] Greedan J E 2001 J. Mater. Chem. 11 37
[38] Nesper R 2014 Z. Anorg. Allg. Chem. 640 2639
[39] Gunnarsson O, Calandra M, and Han J E 2003 Rev. Mod. Phys. 75 1085
[40] Valla T, Johnson P D, Yusof Z, Wells B, Li Q, Loureiro S M, Cava R J, Mikami M, Mori Y, Yoshimura M, and Sasaki T 2002 Nature 417 627
[41]Ashcroft N W and Mermin N D 1976 Solid State Physics (Philadelphia, PA: Saunders College)
Related articles from Frontiers Journals
[1] Hui-Fei Zhai, Bo Lin, Pan Zhang, Hao Jiang, Yu-Ke Li, and Guang-Han Cao. Combined Study of Structural, Magnetic and Transport Properties of Eu$_{0.5}$$Ln$$_{0.5}$BiS$_{2}$F Superconductor[J]. Chin. Phys. Lett., 2021, 38(4): 047401
[2] Qiangwei Yin, Zhijun Tu, Chunsheng Gong, Yang Fu , Shaohua Yan , and Hechang Lei. Superconductivity and Normal-State Properties of Kagome Metal RbV$_{3}$Sb$_{5}$ Single Crystals[J]. Chin. Phys. Lett., 2021, 38(3): 047401
[3] Jianan Chu, Teng Wang, Han Zhang, Yixin Liu, Jiaxin Feng, Zhuojun Li, Da Jiang, Gang Mu, Zengfeng Di, and Xiaoming Xie. Gap Structure of 12442-Type KCa$_2$(Fe$_{1-x}$Co$_{x}$)$_4$As$_{4}$F$_2$ ($x$ = 0, 0.1) Revealed by Temperature Dependence of Lower Critical Field[J]. Chin. Phys. Lett., 2020, 37(12): 047401
[4] Kang Zhao, Qing-Ge Mu, Bin-Bin Ruan, Meng-Hu Zhou, Qing-Song Yang, Tong Liu, Bo-Jin Pan, Shuai Zhang, Gen-Fu Chen, and Zhi-An Ren. A New Quasi-One-Dimensional Ternary Molybdenum Pnictide Rb$_{2}$Mo$_{3}$As$_{3}$ with Superconducting Transition at 10.5 K[J]. Chin. Phys. Lett., 2020, 37(9): 047401
[5] Xiao-Chuan Wang, Jia Yu, Bin-Bin Ruan, Bo-Jin Pan, Qing-Ge Mu, Tong Liu, Kang Zhao, Gen-Fu Chen, Zhi-An Ren. Revisiting the Electron-Doped SmFeAsO: Enhanced Superconductivity up to 58.6K by Th and F Codoping[J]. Chin. Phys. Lett., 2017, 34(7): 047401
[6] ZHU Jun, WANG Zhao-Sheng, WANG Zhen-Yu, HOU Xing-Yuan, LUO Hui-Qian, LU Xing-Ye, LI Chun-Hong, SHAN Lei, WEN Hai-Hu, REN Cong. Doping Induced Gap Anisotropy in Iron-Based Superconductors: a Point-Contact Andreev Reflection Study of BaFe2−xNixAs2 Single Crystals[J]. Chin. Phys. Lett., 2015, 32(07): 047401
[7] Hamidreza Emamipour, Jafar Emamipour. Zero-Bias Conductance versus Potential Strength of Interface in Ferromagnetic Superconductors[J]. Chin. Phys. Lett., 2012, 29(3): 047401
[8] MU Gang, ZENG Bin, CHENG Peng, WANG Zhao-Sheng, FANG Lei, SHEN Bing, SHAN Lei, REN Cong, WEN Hai-Hu. Sizable Residual Quasiparticle Density of States Induced by Impurity Scattering Effect in Ba(Fe1-xCox)2As2 Single Crystals[J]. Chin. Phys. Lett., 2010, 27(3): 047401
[9] ZHENG Ping, CHEN Gen-Fu, LI Zheng, HU Wan-Zheng, DONG Jing, LI Gang, WANG Nan-Lin, LUO Jian-Lin. Magnetoresistance in Parent Pnictide AFe2As2(A=Sr, Ba)[J]. Chin. Phys. Lett., 2009, 26(10): 047401
[10] TAO Qian, SHEN Jing-Qin, LI Lin-Jun, LIN Xiao, LUO Yong-Kang, CAO Guang-Han, XU Zhu-An. Upper Critical Fields and Anisotropy of BaFe1.9Ni0.1As2 Single Crystals[J]. Chin. Phys. Lett., 2009, 26(9): 047401
[11] LI Yu-ke, LIN Xiao, TAO Qian, CHEN Hang, WANG Cao, LI Lin-Jun, LUO Yong-Kang, HE Mi, ZHU Zeng-Wei, CAO Gang-Han, XU Zhu-An. Superconductivity and Transport Properties in Th and F Codoped Sm1-xThxFeAsO1-yFy[J]. Chin. Phys. Lett., 2009, 26(1): 047401
[12] OU Hong-Wei, ZHAO Jia-Feng, ZHANG Yan, SHEN Da-Wei, ZHOU Bo, YANGLe-Xian, HE Cheng, CHEN Fei, XU Min, WU Tao, CHEN Xian-Hui, CHEN Yan, FENG Dong-Lai. Angle Integrated Photoemission Study of SmO0.85F0.15FeAs[J]. Chin. Phys. Lett., 2008, 25(6): 047401
[13] MU Gang, ZHU Xi-Yu, FANG Lei, SHAN Lei, REN Cong, WEN Hai-Hu. Nodal Gap in Fe-Based Layered Superconductor LaO0.9F0.1-δFeAs Probed by Specific Heat Measurements[J]. Chin. Phys. Lett., 2008, 25(6): 047401
[14] ZHAO Song-Rui, SHEN Jing-Qin, XU Zhu-An, Takeya H, Hirata K. Magnetic Pair-Breaking in Y1-xHoxNi2B2C ( x=0, 0.25, 0.5, 0.75) Single Crystals[J]. Chin. Phys. Lett., 2006, 23(4): 047401
[15] YANG Li-Hong, DONG Cheng, SONG Hui-Hua, GUO Juan, FU Guang-Cai. Superconductivity in LiTi2O4 Prepared by Hybrid Microwave Method[J]. Chin. Phys. Lett., 2005, 22(1): 047401
Viewed
Full text


Abstract