Chin. Phys. Lett.  2022, Vol. 39 Issue (1): 010301    DOI: 10.1088/0256-307X/39/1/010301
GENERAL |
Anomalous Transport Induced by Non-Hermitian Anomalous Berry Connection in Non-Hermitian Systems
Jiong-Hao Wang1, Yu-Liang Tao1, and Yong Xu1,2*
1Center for Quantum Information, IIIS, Tsinghua University, Beijing 100084, China
2Shanghai Qi Zhi Institute, Shanghai 200030, China
Cite this article:   
Jiong-Hao Wang, Yu-Liang Tao, and Yong Xu 2022 Chin. Phys. Lett. 39 010301
Download: PDF(1062KB)   PDF(mobile)(2296KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Non-Hermitian materials can exhibit not only exotic energy band structures but also an anomalous velocity induced by non-Hermitian anomalous Berry connection as predicted by the semiclassical equations of motion for Bloch electrons. However, it is unclear how the modified semiclassical dynamics modifies transport phenomena. Here, we theoretically demonstrate the emergence of anomalous oscillations driven by either an external dc or ac electric field, which arise from non-Hermitian anomalous Berry connection. Moreover, it is a well-known fact that geometric structures of electric wave functions can only affect the Hall conductivity. However, we are surprised to find a non-Hermitian anomalous Berry connection induced anomalous linear longitudinal conductivity independent of the scattering time. We also show the emergence of a second-order nonlinear longitudinal conductivity induced by non-Hermitian anomalous Berry connection, violating a well-known fact of its absence in a Hermitian system with symmetric energy spectra. These anomalous phenomena are illustrated in a pseudo-Hermitian system with large non-Hermitian anomalous Berry connection. Finally, we propose a practical scheme to realize the anomalous oscillations in an optical system.
Received: 12 November 2021      Express Letter Published: 16 December 2021
PACS:  03.65.Vf (Phases: geometric; dynamic or topological)  
  72.90.+y (Other topics in electronic transport in condensed matter)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/39/1/010301       OR      https://cpl.iphy.ac.cn/Y2022/V39/I1/010301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jiong-Hao Wang
Yu-Liang Tao
and Yong Xu
[1] El-Ganainy R, Makris K G, Khajavikhan M, Musslimani Z H, Rotter S, and Christodoulides D N 2018 Nat. Phys. 14 11
[2] Xu Y 2019 Front. Phys. 14 43402
[3] Zhang D W, Zhu Y Q, Zhao Y X, Yan H, and Zhu S L 2019 Adv. Phys. 67 253
[4] Ashida Y, Gong Z, and Ueda M 2020 Adv. Phys. 69 249
[5] Bergholtz E J, Budich J C, and Kunst F K 2021 Rev. Mod. Phys. 93 015005
[6] Zhen B, Hsu C W, Igarashi Y, Lu L, Kaminer I, Pick A, Chua S L, Joannopoulos J D, and Soljačić M 2015 Nature 525 354
[7] Xu Y, Wang S T, and Duan L M 2017 Phys. Rev. Lett. 118 045701
[8] Cerjan A, Xiao M, Yuan L, and Fan S 2018 Phys. Rev. B 97 075128
[9] Zhou H Y, Peng C, Yoon Y, Hsu C W, Nelson K A, Fu L, Joannopoulos J D, Soljačić M, and Zhen B 2018 Science 359 1009
[10] Carlström J and Bergholtz E J 2018 Phys. Rev. A 98 042114
[11] Yang Z and Hu J 2019 Phys. Rev. B 99 041202(R)
[12] Wang H Q, Ruan J W, and Zhang H J 2019 Phys. Rev. B 99 075130
[13] Özdemir S K, Rotter S, Nori F, and Yang L 2019 Nat. Mater. 18 783
[14] Cerjan A, Huang S, Wang M, Chen K P, Chong Y, and Rechtsman M C 2019 Nat. Photon. 13 623
[15] Kawabata K, Bessho T, and Sato M 2019 Phys. Rev. Lett. 123 066405
[16] Zhang X F, Ding K, Zhou X J, Xu J, and Jin D F 2019 Phys. Rev. Lett. 123 237202
[17] Hou J, Li Z, Luo X W, Gu Q, and Zhang C 2020 Phys. Rev. Lett. 124 073603
[18] Yang Z, Chiu C K, Fang C, and Hu J 2020 Phys. Rev. Lett. 124 186402
[19] Wang K K, Xiao L, Budich J C, Yi W, and Xue P 2021 Phys. Rev. Lett. 127 026404
[20] Kozii V and Fu L 2017 arXiv:1708.05841 [cond-mat.mes-hall]
[21] Zyuzin A A and Zyuzin A Y 2018 Phys. Rev. B 97 041203(R)
[22] Yoshida T, Peters R, and Kawakami N 2018 Phys. Rev. B 98 035141
[23] Zhao P L, Wang A M, and Liu G Z 2018 Phys. Rev. B 98 085150
[24] Yoshida T, Peters R, Kawakami N, and Hatsugai Y 2019 Phys. Rev. B 99 121101(R)
[25] Nagai Y, Qi Y, Isobe H, Kozii V, and Fu L 2020 Phys. Rev. Lett. 125 227204
[26] Okuma N and Sato M 2021 Phys. Rev. Lett. 126 176601
[27] Tao Y L, Qin T, and Xu Y 2021 arXiv:2111.03348 [cond-mat.str-el]
[28] Chang M C and Niu Q 1995 Phys. Rev. Lett. 75 1348
[29] Sundaram G and Niu Q 1999 Phys. Rev. B 59 14915
[30] Xiao D, Shi J, and Niu Q 2005 Phys. Rev. Lett. 95 137204
[31] Xiao D, Chang M C, and Niu Q 2010 Rev. Mod. Phys. 82 1959
[32] Gao Y, Yang S A, and Niu Q 2014 Phys. Rev. Lett. 112 166601
[33] Sodemann I and Fu L 2015 Phys. Rev. Lett. 115 216806
[34] Silberstein N, Behrends J, Goldstein M, and Ilan R 2020 Phys. Rev. B 102 245147
[35]See the Supplementary Material
[36] Blohmann C 2003 Eur. Phys. J. C 30 435
[37] Zhu Y Q, Zheng W, Zhu S L, and Palumbo G 2021 Phys. Rev. B 104 205103
[38] Mostafazadeh A 2002 J. Math. Phys. 43 205
[39] Zhang K, Yang Z, and Fang C 2020 Phys. Rev. Lett. 125 126402
[40] Okuma N, Kawabata K, Shiozaki K, and Sato M 2020 Phys. Rev. Lett. 124 086801
[41] Borgnia D S, Kruchkov A J, and Slager R J 2020 Phys. Rev. Lett. 124 056802
[42] Yao S and Wang Z 2018 Phys. Rev. Lett. 121 086803
[43] Xiong Y 2018 J. Phys. Commun. 2 035043
[44] Mao L, Deng T, and Zhang P 2021 Phys. Rev. B 104 125435
[45] Hafezi M, Demler E A, Lukin M D, and Taylor J M 2011 Nat. Phys. 7 907
[46] Yanik M F and Fan S 2004 Phys. Rev. Lett. 92 083901
[47] Longhi S, Gatti D, and Valle G D 2015 Sci. Rep. 5 13376
Related articles from Frontiers Journals
[1] Wen Zheng, Jianwen Xu, Zhuang Ma, Yong Li, Yuqian Dong, Yu Zhang, Xiaohan Wang, Guozhu Sun, Peiheng Wu, Jie Zhao, Shaoxiong Li, Dong Lan, Xinsheng Tan, and Yang Yu. Measuring Quantum Geometric Tensor of Non-Abelian System in Superconducting Circuits[J]. Chin. Phys. Lett., 2022, 39(10): 010301
[2] Song Wang, Lei Wang, Furong Zhang, and Ling-Jun Kong. Optimization of Light Field for Generation of Vortex Knot[J]. Chin. Phys. Lett., 2022, 39(10): 010301
[3] Weizheng Cao, Yunlong Su, Qi Wang, Cuiying Pei, Lingling Gao, Yi Zhao, Changhua Li, Na Yu, Jinghui Wang, Zhongkai Liu, Yulin Chen, Gang Li, Jun Li, and Yanpeng Qi. Quantum Oscillations in Noncentrosymmetric Weyl Semimetal SmAlSi[J]. Chin. Phys. Lett., 2022, 39(4): 010301
[4] Heng-Xi Ji, Lin-Han Mo, and Xin Wan. Dynamics of the Entanglement Zero Modes in the Haldane Model under a Quantum Quench[J]. Chin. Phys. Lett., 2022, 39(3): 010301
[5] Xiang Zhang, Zhaozheng Lyu, Guang Yang, Bing Li, Yan-Liang Hou, Tian Le, Xiang Wang, Anqi Wang, Xiaopei Sun, Enna Zhuo, Guangtong Liu, Jie Shen, Fanming Qu, and Li Lu. Anomalous Josephson Effect in Topological Insulator-Based Josephson Trijunction[J]. Chin. Phys. Lett., 2022, 39(1): 010301
[6] Yunqing Ouyang, Qing-Rui Wang, Zheng-Cheng Gu, and Yang Qi. Computing Classification of Interacting Fermionic Symmetry-Protected Topological Phases Using Topological Invariants[J]. Chin. Phys. Lett., 2021, 38(12): 010301
[7] Kun Luo, Wei Chen, Li Sheng, and D. Y. Xing. Random-Gate-Voltage Induced Al'tshuler–Aronov–Spivak Effect in Topological Edge States[J]. Chin. Phys. Lett., 2021, 38(11): 010301
[8] Zhuo Cheng and Zhenhua Yu. Supervised Machine Learning Topological States of One-Dimensional Non-Hermitian Systems[J]. Chin. Phys. Lett., 2021, 38(7): 010301
[9] Z. Z. Zhou, H. J. Liu, G. Y. Wang, R. Wang, and X. Y. Zhou. Dual Topological Features of Weyl Semimetallic Phases in Tetradymite BiSbTe$_{3}$[J]. Chin. Phys. Lett., 2021, 38(7): 010301
[10] X. M. Yang , L. Jin, and Z. Song. Topological Knots in Quantum Spin Systems[J]. Chin. Phys. Lett., 2021, 38(6): 010301
[11] Gang-Feng Guo, Xi-Xi Bao, Lei Tan, and Huai-Qiang Gu. Phase-Modulated 2D Topological Physics in a One-Dimensional Ultracold System[J]. Chin. Phys. Lett., 2021, 38(4): 010301
[12] Tianyu Li, Yong-Sheng Zhang, and Wei Yi. Two-Dimensional Quantum Walk with Non-Hermitian Skin Effects[J]. Chin. Phys. Lett., 2021, 38(3): 010301
[13] Qian Sui, Jiaxin Zhang, Suhua Jin, Yunyouyou Xia, and Gang Li. Model Hamiltonian for the Quantum Anomalous Hall State in Iron-Halogenide[J]. Chin. Phys. Lett., 2020, 37(9): 010301
[14] Kaixuan Zhang, Yongping Du, Pengdong Wang, Laiming Wei, Lin Li, Qiang Zhang, Wei Qin, Zhiyong Lin, Bin Cheng, Yifan Wang, Han Xu, Xiaodong Fan, Zhe Sun, Xiangang Wan, and Changgan Zeng. Butterfly-Like Anisotropic Magnetoresistance and Angle-Dependent Berry Phase in a Type-II Weyl Semimetal WP$_{2}$[J]. Chin. Phys. Lett., 2020, 37(9): 010301
[15] Cuiying Pei, Yunyouyou Xia, Jiazhen Wu, Yi Zhao, Lingling Gao, Tianping Ying, Bo Gao, Nana Li, Wenge Yang, Dongzhou Zhang, Huiyang Gou, Yulin Chen, Hideo Hosono, Gang Li, Yanpeng Qi. Pressure-Induced Topological and Structural Phase Transitions in an Antiferromagnetic Topological Insulator[J]. Chin. Phys. Lett., 2020, 37(6): 010301
Viewed
Full text


Abstract