Chin. Phys. Lett.  2021, Vol. 38 Issue (9): 097101    DOI: 10.1088/0256-307X/38/9/097101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Manipulation of Dirac Fermions in Nanochain-Structured Graphene
Wen-Han Dong1†, De-Liang Bao1†, Jia-Tao Sun2*, Feng Liu3, and Shixuan Du1,4,5*
1Institute of Physics and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
2School of Information and Electronics, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Beijing Institute of Technology, Beijing 100081, China
3Department of Materials Science and Engineering, University of Utah, Salt Lake City, Utah 84112, USA
4CAS Center for Excellence in Topological Quantum Computation, Beijing 100190, China
5Songshan Lake Materials Laboratory, Dongguan 523808, China
Cite this article:   
Wen-Han Dong, De-Liang Bao, Jia-Tao Sun et al  2021 Chin. Phys. Lett. 38 097101
Download: PDF(4523KB)   PDF(mobile)(8396KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Graphene has afforded an ideal 2D platform for investigating a rich and fascinating behavior of Dirac fermions. Here, we develop a theoretical mechanism for manipulating the Dirac fermions in graphene, such as from type-I to type-II and type-III, by a top-down nanopatterning approach. We demonstrate that by selective chemical adsorption to pattern the 2D graphene into coupled 1D armchair chains (ACs), the intrinsic isotropic upright Dirac cone becomes anisotropic and strongly tilted. Based on model analyses and first-principles calculations, we show that both the shape and tilt of Dirac cone can be tuned by the species of chemisorption, e.g., halogen vs hydrogen, which modifies the strength of inter-AC coupling. Furthermore, the topological edge states and transport properties of the engineered Dirac fermions are investigated. Our work sheds lights on understanding the Dirac fermions in a nanopatterned graphene platform, and provides guidance for designing nanostructures with novel functionality.
Received: 05 July 2021      Editors' Suggestion Published: 02 September 2021
PACS:  71.20.-b (Electron density of states and band structure of crystalline solids)  
  72.80.Vp (Electronic transport in graphene)  
  73.20.-r (Electron states at surfaces and interfaces)  
Fund: Supported by the National Key Research and Development Program of China (Grant Nos. 2020YFA0308800 and 2016YFA0202300), the National Natural Science Foundation of China (Grant Nos. 11974045 and 61888102), Chinese Academy of Sciences (Grant No. XDB30000000), Beijing Institute of Technology Research Fund Program for Young Scholars (Grant No. 3050011181909), and China Postdoctoral Science Foundation (Grant No. 2018M641511). F. L. was supported by U.S. DOE-BES (Grant No. DE-FG02-04ER46148).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/38/9/097101       OR      https://cpl.iphy.ac.cn/Y2021/V38/I9/097101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Wen-Han Dong
De-Liang Bao
Jia-Tao Sun
Feng Liu
and Shixuan Du
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, and Firsov A A 2004 Science 306 666
[2] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, and Firsov A A 2005 Nature 438 197
[3] Liu Z K, Zhou B, Zhang Y, Wang Z J, Weng H M, Prabhakaran D, Mo S- K, Shen Z X, Fang Z, Dai X, Hussain Z, and Chen Y L 2014 Science 343 864
[4] Lv B Q, Weng H, Fu B B, Wang X P, Miao H, Ma J, Richard P, Huang X, Zhao L, and Chen G 2015 Phys. Rev. X 5 031013
[5] Soluyanov A A, Gresch D, Wang Z J, Wu Q S, Troyer M, Dai X, and Bernevig B A 2015 Nature 527 495
[6] Bzdušek T, Wu Q, Rüegg A, Sigrist M, and Soluyanov A A 2016 Nature 538 75
[7] Wang Z, Alexandradinata A, Cava R J, Bernevig B A 2016 Nature 532 189
[8] Zhu Z, Winkler G W, Wu Q, Li J, and Soluyanov A A 2016 Phys. Rev. X 6 031003
[9] Stenull O, Kane C, and Lubensky T 2016 Phys. Rev. Lett. 117 068001
[10] Gusynin V and Sharapov S 2005 Phys. Rev. Lett. 95 146801
[11] Zhang Y, Tan Y W, Stormer H L, and Kim P 2005 Nature 438 201
[12] Beenakker C 2008 Rev. Mod. Phys. 80 1337
[13] Son Y W, Cohen M L, and Louie S G 2006 Nature 444 347
[14] Nomura K and MacDonald A H 2007 Phys. Rev. Lett. 98 076602
[15] Wu X, Li X, Zhang R Y, Xiang X, Tian J, Huang Y, Wang S, Hou B, Chan C T, and Wen W 2020 Phys. Rev. Lett. 124 075501
[16] Ozawa T, Price H M, Amo A, Goldman N, Hafezi M, Lu L, Rechtsman M C, Schuster D, Simon J, Zilberberg O, and Carusotto I 2019 Rev. Mod. Phys. 91 015006
[17] Noh H J, Jeong J, Cho E J, Kim K, Min B, and Park B G 2017 Phys. Rev. Lett. 119 016401
[18] Yan M, Huang H, Zhang K, Wang E, Yao W, Deng K, Wan G, Zhang H, Arita M, and Yang H 2017 Nat. Commun. 8 257
[19] Huang H Q, Jin Y W, and Liu F 2018 Phys. Rev. B 98 121110(R)
[20] Sadhukhan K, Politano A, and Agarwal A 2020 Phys. Rev. Lett. 124 046803
[21] Teknowijoyo S, Jo N H, Scheurer M S, Tanatar M A, Cho K, Bud'ko S L, Orth P P, Canfield P C, and Prozorov R 2018 Phys. Rev. B 98 024508
[22] Fu B B, Yi C J, Wang Z J, Yang M, Lv B Q, Gao X, Li M, Huang Y B, Weng H M, and Shi Y G 2019 Chin. Phys. B 28 037103
[23] Liu H, Sun J T, Song C, Huang H, Liu F, and Meng S 2020 Chin. Phys. Lett. 37 067101
[24] Fei F, Bo X, Wang R, Wu B, Jiang J, Fu D, Gao M, Zheng H, Chen Y, and Wang X 2017 Phys. Rev. B 96 041201
[25] Burkov A 2018 Phys. Rev. Lett. 120 016603
[26] Liu Y, Wang G, Huang Q, Guo L, and Chen X 2012 Phys. Rev. Lett. 108 225505
[27] Malko D, Neiss C, Vines F, and Görling A 2012 Phys. Rev. Lett. 108 086804
[28] Zhou X F, Dong X, Oganov A R, Zhu Q, Tian Y, and Wang H T 2014 Phys. Rev. Lett. 112 085502
[29] Gao H and Ren W 2020 Carbon 158 210
[30] Gong Z, Shi X, Li J, Li S, He C, Ouyang T, Zhang C, Tang C, and Zhong J 2020 Phys. Rev. B 101 155427
[31] Cai J, Ruffieux P, Jaafar R, Bieri M, Braun T, Blankenburg S, Muoth M, Seitsonen A P, Saleh M, and Feng X 2010 Nature 466 470
[32] Huang M, Boone C, Roberts M, Savage D E, Lagally M G, Shaji N, Qin H, Blick R, Nairn J A, and Liu F 2005 Adv. Mater. 17 2860
[33] Roth W J, Nachtigall P, Morris R E, Wheatley P S, Seymour V R, Ashbrook S E, Chlubná P, Grajciar L, Položij M, and Zukal A 2013 Nat. Chem. 5 628
[34] Autès G, Isaeva A, Moreschini L, Johannsen J C, Pisoni A, Mori R, Zhang W, Filatova T G, Kuznetsov A N, and Forró L 2016 Nat. Mater. 15 154
[35] Noguchi R, Takahashi T, Kuroda K, Ochi M, Shirasawa T, Sakano M, Bareille C, Nakayama M, Watson M, and Yaji K 2019 Nature 566 518
[36] Noguchi R, Kobayashi M, Jiang Z, Kuroda K, Takahashi T, Xu Z, Lee D, Hirayama M, Ochi M, and Shirasawa T 2021 Nat. Mater. 20 473
[37] Yang T, Wan Q, Yan D, Zhu Z, Wang Z, Peng C, Huang Y, Yu R, Hu J, and Mao Z 2020 Nat. Mater. 19 27
[38] Wang B, Xia W, Li S, Wang K, Yang S A, Guo Y, and Xue J 2021 ACS Nano 15 7149
[39] Li Y, Dietrich S, Forsythe C, Taniguchi T, Watanabe K, Moon P, and Dean C R 2021 Nat. Nanotechnol. 16 525
[40] Bykov M, Fedotenko T, Chariton S, Laniel D, Glazyrin K, Hanfland M, Smith J S, Prakapenka V B, Mahmood M F, and Goncharov A F 2021 Phys. Rev. Lett. 126 175501
[41] Su W P, Schrieffer J, and Heeger A J 1979 Phys. Rev. Lett. 42 1698
[42] Su W P, Schrieffer J, and Heeger A 1980 Phys. Rev. B 22 2099
[43] Son Y W, Cohen M L, and Louie S G 2006 Phys. Rev. Lett. 97 216803
[44] Yu D, Lupton E M, Liu M, Liu W, and Liu F 2008 Nano Res. 1 56
[45] Balog R, Jørgensen B, Nilsson L, Andersen M, Rienks E, Bianchi M, Fanetti M, Lægsgaard E, Baraldi A, and Lizzit S 2010 Nat. Mater. 9 315
[46] Elias D C, Nair R R, Mohiuddin T, Morozov S, Blake P, Halsall M, Ferrari A C, Boukhvalov D, Katsnelson M, and Geim A 2009 Science 323 610
[47] Goerbig M O, Fuchs J N, Montambaux G, and Piechon F 2008 Phys. Rev. B 78 045415
[48] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 146802
[49] Qi X L, Hughes T L, and Zhang S C 2008 Phys. Rev. B 78 045302
[50] Lee P A, Rice T, and Anderson P 1973 Phys. Rev. Lett. 31 462
[51] Gröning O, Wang S, Yao X, Pignedoli C A, Barin G B, Daniels C, Cupo A, Meunier V, Feng X, and Narita A 2018 Nature 560 209
[52] Chen H, Bao D L, Wang D F, Que Y D, Xiao W D, Qian G J, Guo H, Sun J T, Zhang Y Y, Du S X, Pantelides S T, and Gao H J 2018 Adv. Mater. 30 1801838
[53] Marzari N and Vanderbilt D 1997 Phys. Rev. B 56 12847
[54] Song Z, Zhang T, Fang Z, and Fang C 2018 Nat. Commun. 9 3530
[55] Liu F and Wakabayashi K 2017 Phys. Rev. Lett. 118 076803
[56] Liu F, Deng H Y, and Wakabayashi K 2019 Phys. Rev. Lett. 122 086804
[57] Bastin A, Lewiner C, Betbeder-Matibet O, and Nozieres P 1971 J. Phys. Chem. Solids 32 1811
[58] García J H, Covaci L, and Rappoport T G 2015 Phys. Rev. Lett. 114 116602
[59] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 226801
[60] Robinson J T, Burgess J S, Junkermeier C E, Badescu S C, Reinecke T L, Perkins F K, Zalalutdniov M K, Baldwin J W, Culbertson J C, and Sheehan P E 2010 Nano Lett. 10 3001
[61] Wu J, Xie L, Li Y, Wang H, Ouyang Y, Guo J, and Dai H 2011 J. Am. Chem. Soc. 133 19668
Viewed
Full text


Abstract