Chin. Phys. Lett.  2021, Vol. 38 Issue (8): 087103    DOI: 10.1088/0256-307X/38/8/087103
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Universal Theory and Basic Rules of Strain-Dependent Doping Behaviors in Semiconductors
Xiaolan Yan1, Pei Li1, Su-Huai Wei1,2*, and Bing Huang1,2*
1Beijing Computational Science Research Center, Beijing 100193, China
2Department of Physics, Beijing Normal University, Beijing 100875, China
Cite this article:   
Xiaolan Yan, Pei Li, Su-Huai Wei et al  2021 Chin. Phys. Lett. 38 087103
Download: PDF(1503KB)   PDF(mobile)(2397KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Enhancing the dopability of semiconductors via strain engineering is critical to improving their functionalities, which is, however, largely hindered by the lack of basic rules. In this study, for the first time, we develop a universal theory to understand the total energy changes of point defects (or dopants) with different charge states under strains, which can exhibit either parabolic or superlinear behaviors, determined by the size of defect-induced local volume change ($\Delta V$). In general, $\Delta V$ increases (decreases) when an electron is added (removed) to (from) the defect site. Consequently, in terms of this universal theory, three basic rules can be obtained to further understand or predict the diverse strain-dependent doping behaviors, i.e., defect formation energies, charge-state transition levels, and Fermi pinning levels, in semiconductors. These three basic rules could be generally applied to improve the doping performance or overcome the doping bottlenecks in various semiconductors.
Received: 10 June 2021      Express Letter Published: 23 July 2021
PACS:  71.55.-i (Impurity and defect levels)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  68.55.Ln (Defects and impurities: doping, implantation, distribution, concentration, etc.)  
  61.72.Bb (Theories and models of crystal defects)  
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 11634003, 11991060, and 12088101), and NSAF (Grant No. U1930402).
TRENDMD:   
URL:  
http://cpl.iphy.ac.cn/10.1088/0256-307X/38/8/087103       OR      http://cpl.iphy.ac.cn/Y2021/V38/I8/087103
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xiaolan Yan
Pei Li
Su-Huai Wei
and Bing Huang
[1]Freysoldt C, Neugebauer J, and van de Walle C G 2011 Advanced Calculations for Defects in Materials: Electronic Structure Methods (New York: Wiley-VCH Verlag)
[2] Freysoldt C, Grabowski B, Hickel T et al. 2014 Rev. Mod. Phys. 86 253
[3] Jacobsen R S, Andersen K N, Borel P I et al. 2006 Nature 441 199
[4] Feng J, Qian X, Huang C W et al. 2012 Nat. Photon. 6 866
[5] Jain J R, Hryciw A, Baer T M et al. 2012 Nat. Photon. 6 398
[6] Yan Q, Rinke P, Janotti A et al. 2014 Phys. Rev. B 90 125118
[7] Yang M M, Kim D J, and Alexe M 2018 Science 360 904
[8] Liu C, Song X, Li Q, Ma Y, and Chen C 2021 Chin. Phys. Lett. 38 086301
[9] Xie Y, Feng J, Xiang H, and Gong X 2019 Chin. Phys. Lett. 36 056801
[10] Yadav S K, Sadowski T, and Ramprasad R 2010 Phys. Rev. B 81 144120
[11] Chen Y, Lei Y, Li Y et al. 2020 Nature 577 209
[12] Huang B, Jin K H, Cui B et al. 2017 Nat. Commun. 8 15850
[13] Yu D, Zhang Y, and Liu F 2008 Phys. Rev. B 78 245204
[14] Zhou M, Liu Z, Wang Z et al. 2013 Phys. Rev. Lett. 111 246801
[15] Harats M G, Kirchhof J N, Qiao M et al. 2020 Nat. Photon. 14 324
[16] Zhou H B, Jin S, Zhang Y et al. 2012 Phys. Rev. Lett. 109 135502
[17] Kalikka J, Zhou X, Dilcher E et al. 2016 Nat. Commun. 7 11983
[18] Sadigh B, Lenosky T J, Caturla M J et al. 2002 Appl. Phys. Lett. 80 4738
[19] Sun Y, Thompson S E, and Nishida T 2007 J. Appl. Phys. 101 104503
[20] Bennett N S, Smith A J, Gwilliam R M et al. 2008 J. Vac. Sci. & Technol. B 26 391
[21] Ahn C, Bennett N, Dunham S T et al. 2009 Phys. Rev. B 79 073201
[22] Zhu J, Liu F, Stringfellow G B et al. 2010 Phys. Rev. Lett. 105 195503
[23] Donner W, Chen C, Liu M et al. 2011 Chem. Mater. 23 984
[24] Kan E, Wu F, Zhang Y et al. 2012 Appl. Phys. Lett. 100 072401
[25] Aschauer U, Pfenninger R, Selbach S M et al. 2013 Phys. Rev. B 88 054111
[26] Zhu J, Liu F, and Scarpulla M A 2014 APL Mater. 2 012110
[27] Zheng T, Lin W, Cai D et al. 2014 Nanoscale Res. Lett. 9 40
[28] Zheng Y F, Chen S, Yang J H et al. 2019 Phys. Rev. B 99 014113
[29] Chaudhuri R, Bader S J, Chen Z et al. 2019 Science 365 1454
[30] Lu Y B, Dai Y, Wei W et al. 2013 ChemPhysChem 14 3916
[31] Bean J C 1985 Science 230 127
[32] Allred C L, Yuan X, Bazant M Z et al. 2004 Phys. Rev. B 70 134113
[33] Zhang S B and Northrup J E 1991 Phys. Rev. Lett. 67 2339
[34] Laks D B, Van de Walle C G, Neumark G F et al. 1992 Phys. Rev. B 45 10965
[35] Wei S H 2004 Comput. Mater. Sci. 30 337
[36] Li Y H, Gong X G, and Wei S H 2006 Phys. Rev. B 73 245206
[37] Lyons J L and Van de Walle C G 2017 npj Comput. Mater. 3 12
[38] Miceli G and Pasquarello A 2016 Phys. Rev. B 93 165207
[39] Moriya N, Feldman L C, Luftman H S et al. 1994 J. Vac. Sci. & Technol. B 12 383
[40] Ovsyannikov S V, Gou H, Karkin A E et al. 2014 Chem. Mater. 26 5274
[41] Franz M, Pressel K, and Gaworzewski P 1998 J. Appl. Phys. 84 709
[42] Zhang S B, Wei S H, and Zunger A 1998 J. Appl. Phys. 83 3192
[43] Nakamura S, Senoh M, and Mukai T 1991 Jpn. J. Appl. Phys. 30 L1708
[44] Tao I W, Jurkovic M, and Wang W I 1994 Appl. Phys. Lett. 64 1848
[45] Tanaka T, Hayashida K, Nishio M et al. 2003 J. Appl. Phys. 94 1527
[46] Janotti A, Wei S H, and Zhang S B 2003 Appl. Phys. Lett. 83 3522
[47] Nakarmi M L, Nepal N, Lin J Y et al. 2009 Appl. Phys. Lett. 94 091903
Viewed
Full text


Abstract