Chin. Phys. Lett.  2021, Vol. 38 Issue (7): 077402    DOI: 10.1088/0256-307X/38/7/077402
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
S-Wave Superconductivity in Kagome Metal CsV$_{3}$Sb$_{5}$ Revealed by $^{121/123}$Sb NQR and $^{51}$V NMR Measurements
Chao Mu1,2, Qiangwei Yin3, Zhijun Tu3, Chunsheng Gong3, Hechang Lei3, Zheng Li1,2*, and Jianlin Luo1,2,4*
1Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
3Department of Physics and Beijing Key Laboratory of Opto-electronic Functional Materials & Micro-nano Devices, Renmin University of China, Beijing 100872, China
4Songshan Lake Materials Laboratory, Dongguan 523808, China
Cite this article:   
Chao Mu, Qiangwei Yin, Zhijun Tu et al  2021 Chin. Phys. Lett. 38 077402
Download: PDF(1234KB)   PDF(mobile)(1450KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We report $^{121/123}$Sb nuclear quadrupole resonance (NQR) and $^{51}$V nuclear magnetic resonance (NMR) measurements on kagome metal CsV$_3$Sb$_5$ with $T_{\rm c}=2.5$ K. Both $^{51}$V NMR spectra and $^{121/123}$Sb NQR spectra split after a charge density wave (CDW) transition, which demonstrates a commensurate CDW state. The coexistence of the high temperature phase and the CDW phase between $91$ K and $94$ K manifests that it is a first-order phase transition. At low temperature, electric-field-gradient fluctuations diminish and magnetic fluctuations become dominant. Superconductivity emerges in the charge order state. Knight shift decreases and $1/T_{1}T$ shows a Hebel–Slichter coherence peak just below $T_{\rm c}$, indicating that CsV$_3$Sb$_5$ is an s-wave superconductor.
Received: 09 June 2021      Published: 30 June 2021
PACS:  74.25.nj (Nuclear magnetic resonance)  
  71.45.Lr (Charge-density-wave systems)  
  76.60.Gv (Quadrupole resonance)  
  76.60.-k (Nuclear magnetic resonance and relaxation)  
Fund: Supported by the National Key Research and Development Program of China (Grant Nos. 2017YFA0302901, 2018YFE0202600, and 2016YFA0300504), the National Natural Science Foundation of China (Grant Nos. 11921004, 11634015, 11822412, and 11774423), the Beijing Natural Science Foundation (Grant No. Z200005), and the Strategic Priority Research Program and Key Research Program of Frontier Sciences of the Chinese Academy of Sciences (Grant No. XDB33010100).
TRENDMD:   
URL:  
http://cpl.iphy.ac.cn/10.1088/0256-307X/38/7/077402       OR      http://cpl.iphy.ac.cn/Y2021/V38/I7/077402
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Chao Mu
Qiangwei Yin
Zhijun Tu
Chunsheng Gong
Hechang Lei
Zheng Li
and Jianlin Luo
[1] Wang W S, Li Z Z, Xiang Y Y, and Wang Q H 2013 Phys. Rev. B 87 115135
[2] Kiesel M L, Platt C, and Thomale R 2013 Phys. Rev. Lett. 110 126405
[3] Yan S, Huse D A, and White S R 2011 Science 332 1173
[4] Fu M, Imai T, Han T H, and Lee Y S 2015 Science 350 655
[5] Khuntia P, Velazquez M, Barthélemy Q, Bert F, Kermarrec E, Legros A, Bernu B, Messio L, Zorko A, and Mendels P 2020 Nat. Phys. 16 469
[6] Guo H M and Franz M 2009 Phys. Rev. B 80 113102
[7] Ko W H, Lee P A, and Wen X G 2009 Phys. Rev. B 79 214502
[8] Yu S L and Li J X 2012 Phys. Rev. B 85 144402
[9] Ortiz B R, Gomes L C, Morey J R, Winiarski M, Bordelon M, Mangum J S, Oswald I W H, Rodriguez-Rivera J A, Neilson J R, Wilson S D, Ertekin E, McQueen T M, and Toberer E S 2019 Phys. Rev. Mater. 3 094407
[10] Ortiz B R, Teicher S M L, Hu Y, Zuo J L, Sarte P M, Schueller E C, Abeykoon A M M, Krogstad M J, Rosenkranz S, Osborn R, Seshadri R, Balents L, He J, and Wilson S D 2020 Phys. Rev. Lett. 125 247002
[11] Ortiz B R, Sarte P M, Kenney E M, Graf M J, Teicher S M L, Seshadri R, and Wilson S D 2021 Phys. Rev. Mater. 5 034801
[12] Yin Q W, Tu Z J, Gong C S, Fu Y, Yan S H, and Lei H C 2021 Chin. Phys. Lett. 38 037403
[13] Jiang Y X, Yin J X, Denner M M, Shumiya N, Ortiz B R, He J, Liu X, Zhang S S, Chang G, Belopolski I, Zhang Q, Hossain M S, Cochran T A, Multer D, Litskevich M, Cheng Z J, Yang X P, Guguchia Z, Xu G, Wang Z, Neupert T, Wilson S D, and Hasan M Z 2020 arXiv:2012.15709 [cond-mat.supr-con]
[14] Yang S Y, Wang Y, Ortiz B R, Liu D, Gayles J, Derunova E, Gonzalez-Hernandez R, Šmejkal L, Chen Y, Parkin S S P, Wilson S D, Toberer E S, McQueen T, and Ali M N 2020 Sci. Adv. 6 eabb6003
[15] Kenney E M, Ortiz B R, Wang C, Wilson S D, and Graf M J 2021 J. Phys.: Condens. Matter 33 235801
[16] Yu F H, Wu T, Wang Z Y, Lei B, Zhuo W Z, Ying J J, and Chen X H 2021 arXiv:2102.10987 [cond-mat.str-el]
[17] Feng X, Jiang K, Wang Z, and Hu J 2021 Sci. Bull. (in press)
[18] Denner M M, Thomale R, and Neupert T 2021 arXiv:2103.14045 [cond-mat.str-el]
[19] Li H X, Zhang T T, Pai Y Y, Marvinney C, Said A, Yilmaz T, Yin Q, Gong C, Tu Z, Vescovo E, Moore R G, Murakami S, Lei H C, Lee H N, Lawrie B, and Miao H 2021 arXiv:2103.09769 [cond-mat.supr-con]
[20] Zhou X, Li Y, Fan X, Hao J, Dai Y, Wang Z, Yao Y, and Wen H H 2021 arXiv:2104.01015 [cond-mat.supr-con]
[21] Chen K Y, Wang N N, Yin Q W, Gu Y H, Jiang K, Tu Z J, Gong C S, Uwatoko Y, Sun J P, Lei H C, Hu J P, and Cheng J G 2021 Phys. Rev. Lett. 126 247001
[22] Du F, Luo S, Ortiz B R, Chen Y, Duan W, Zhang D, Lu X, Wilson S D, Song Y, and Yuan H 2021 Phys. Rev. B 103 L220504
[23] Zhang Z, Chen Z, Zhou Y, Yuan Y, Wang S, Wang J, Yang H, An C, Zhang L, Zhu X, Zhou Y, Chen X, Zhou J, and Yang Z 2021 Phys. Rev. B 103 224513
[24] Chen X, Zhan X, Wang X, Deng1 J, Liu X B, Chen X, Guo J G and Chen X L 2021 Chin. Phys. Lett. 38 057402
[25] Zhao C C, Wang L S, Xia W, Yin Q W, Ni J M, Huang Y Y, Tu C P, Tao Z C, Tu Z J, Gong C S, Lei H C, Guo Y F, Yang X F, and Li S Y 2021 arXiv:2102.08356 [cond-mat.supr-con]
[26] Liang Z, Hou X, Ma W, Zhang F, Wu P, Zhang Z, Yu F, Ying J J, Jiang K, Shan L, Wang Z, and Chen X H 2021 arXiv:2103.04760 [cond-mat.supr-con]
[27] Chen H, Yang H, Hu B, Zhao Z, Yuan J, Xing Y, Qian G, Huang Z, Li G, Ye Y, Yin Q, Gong C, Tu Z, Lei H, Ma S, Zhang H, Ni S, Tan H, Shen C, Dong X, Yan B, Wang Z, and Gao H J 2021 arXiv:2103.09188 [cond-mat.supr-con]
[28] Wang Y, Yang S, Sivakumar P K, Ortiz B R, Teicher S M L, Wu H, Srivastava A K, Garg C, Liu D, Parkin S S P, Toberer E S, McQueen T, Wilson S D, and Ali M N 2020 arXiv:2012.05898 [cond-mat.supr-con]
[29] Xu J P, Wang M X, Liu Z L, Ge J F, Yang X, Liu C, Xu Z A, Guan D, Gao C L, Qian D, Liu Y, Wang Q H, Zhang F C, Xue Q K, and Jia J F 2015 Phys. Rev. Lett. 114 017001
[30] Duan W, Nie Z, Luo S, Yu F, Ortiz B R, Yin L, Su H, Du F, Wang A, Chen Y, Lu X, Ying J, Wilson S D, Chen X, Song Y, and Yuan H 2021 arXiv:2103.11796 [cond-mat.supr-con]
[31] Clark W G, Hanson M E, Lefloch F, and Ségransan P 1995 Rev. Sci. Instrum. 66 2453
[32] Ni S, Ma S, Zhang Y, Yuan J, Yang H, Lu Z, Wang N, Sun J, Zhao Z, Li D, Liu S, Zhang H, Chen H, Jin K, Cheng J, Yu L, Zhou F, Dong X, Hu J, Gao H J, and Zhao Z 2021 Chin. Phys. Lett. 38 057403
[33] Sakurai A, Matsumura M, Kato H, Nishioka T, Matsuoka E, Hayashi K, and Takabatake T 2008 J. Phys. Soc. Jpn. 77 063701
[34]Asayama K 2002 Nuclear Magnetic Resonance in Itinerant Electron System (Tokyo: Shokabo)
[35] Julien M H, Simonet V, Canals B, Ballou R, Hassan A K, Affronte M, Garlea V O, Darie C, and Bordet P 2013 Phys. Rev. B 87 214423
[36] Kitagawa S, Ishida K, Nakano K, Yajima T, and Kageyama H 2013 Phys. Rev. B 87 060510(R)
[37] Parker D, Dolgov O V, Korshunov M M, Golubov A A, and Mazin I I 2008 Phys. Rev. B 78 134524
[38] Li Z, Jiao W H, Cao G H, and Zheng G Q 2016 Phys. Rev. B 94 174511
[39] Kotegawa H, Ishida K, Kitaoka Y, Muranaka T, and Akimitsu J 2001 Phys. Rev. Lett. 87 127001
[40] Kohori Y, Kohara T, Sato N, and Kinokiri T 2003 Physica C 388–389 579
[41] Xu H S, Yan Y J, Yin R, Xia W, Fang S, Chen Z, Li Y, Yang W, Guo Y, and Feng D L 2021 arXiv:2104.08810 [cond-mat.supr-con]
[42] Pan J, Jiao W H, Hong X C, Zhang Z, He L P, Cai P L, Zhang J, Cao G H, and Li S Y 2015 Phys. Rev. B 92 180505
[43] Fu L and Kane C L 2008 Phys. Rev. Lett. 100 096407
Viewed
Full text


Abstract