Chin. Phys. Lett.  2021, Vol. 38 Issue (7): 071201    DOI: 10.1088/0256-307X/38/7/071201
THE PHYSICS OF ELEMENTARY PARTICLES AND FIELDS |
Resolving the Bethe–Salpeter Kernel
Si-Xue Qin1* and Craig D. Roberts2,3*
1Department of Physics, Chongqing University, Chongqing 401331, China
2School of Physics, Nanjing University, Nanjing 210093, China
3Institute for Nonperturbative Physics, Nanjing University, Nanjing 210093, China
Cite this article:   
Si-Xue Qin and Craig D. Roberts 2021 Chin. Phys. Lett. 38 071201
Download: PDF(787KB)   PDF(mobile)(1205KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A novel method for constructing a kernel for the meson bound-state problem is described. It produces a closed form that is symmetry-consistent (discrete and continuous) with the gap equation defined by any admissible gluon-quark vertex, $\varGamma$. Applicable even when the diagrammatic content of $\varGamma$ is unknown, the scheme can foster new synergies between continuum and lattice approaches to strong interactions. The framework is illustrated by showing that the presence of a dressed-quark anomalous magnetic moment in $\varGamma$, an emergent feature of strong interactions, can remedy many defects of widely used meson bound-state kernels, including the mass splittings between vector and axial-vector mesons and the level ordering of pseudoscalar and vector meson radial excitations.
Received: 18 May 2021      Published: 07 June 2021
PACS:  11.10.St (Bound and unstable states; Bethe-Salpeter equations)  
  11.30.Rd (Chiral symmetries)  
  12.38.Lg (Other nonperturbative calculations)  
  24.85.+p (Quarks, gluons, and QCD in nuclear reactions)  
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 11805024 and 11947406).
TRENDMD:   
URL:  
http://cpl.iphy.ac.cn/10.1088/0256-307X/38/7/071201       OR      http://cpl.iphy.ac.cn/Y2021/V38/I7/071201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Si-Xue Qin and Craig D. Roberts
[1] Lattes C M G, Muirhead H, Occhialini G P S, and Powell C F 1947 Nature 159 694
[2] Bjorklund R, Crandall W E, Moyer B J, and York H F 1950 Phys. Rev. 77 213
[3] Steinberger J, Panofsky W, and Steller J 1950 Phys. Rev. 78 802
[4] Gell-Mann M 1962 Phys. Rev. 125 1067
Also see 1961 The Eightfold Way: A Theory of Strong Interaction Symmetry, DOE Technical Report TID-12608
[5] Gell-Mann M 1964 Phys. Lett. 8 214
[6]Zweig G 1964 An SU(3) Model for Strong Interaction Symmetry and Its Breaking Parts 1 and 2 (CERN Reports Nos. 8182/TH401 and 8419/TH412)
[7] Erwin A R, March R, Walker W D, and West E 1961 Phys. Rev. Lett. 6 628
[8] Abolins M A, Lander R L, Mehlhop W A W, Xuong N H, and Yager P M 1963 Phys. Rev. Lett. 11 381
[9] Gavillet P et al. 1977 Phys. Lett. B 69 119
[10] Daum C, Hertzberger L, Hoogland W et al. 1981 Nucl. Phys. B 182 269
[11] Basdevant J L, Froggatt C D, and Petersen J L 1972 Phys. Lett. B 41 178
[12] Pelaez J R 2016 Phys. Rep. 658 1
[13]Zyla P A et al. (Particle Data Group) 2020 Prog. Theor. Exp. Phys. 2020 083C01
[14] Roberts C D and Schmidt S M 2020 Eur. Phys. J. Spec. Top. 229 3319
[15] Roberts C D 2020 Symmetry 12 1468
[16] Nambu Y 1960 Phys. Rev. 117 648
[17] Goldstone J 1961 Nuovo Cimento 19 154
[18] Brodsky S J et al. 2015 arXiv:1502.05728 [hep-ph]
[19] Brodsky S J et al. 2020 Int. J. Mod. Phys. E 29 2030006
[20] Barabanov Yu M et al. 2021 Prog. Part. Nucl. Phys. 116 103835
[21] Bhagwat M S, Pichowsky M A, Roberts C D, and Tandy P C 2003 Phys. Rev. C 68 015203
[22] Bowman P O et al. 2005 Phys. Rev. D 71 054507
[23] Fischer C S and Pennington M R 2006 Phys. Rev. D 73 034029
[24] Bhagwat M S and Tandy P C 2006 AIP Conf. Proc. 842 225
[25] Salpeter E E and Bethe H A 1951 Phys. Rev. 84 1232
[26] Nakanishi N 1969 Prog. Theor. Phys. Suppl. 43 1
[27] Lucha W, Schöberl F F, and Gromes D 1991 Phys. Rep. 200 127
[28] Roberts C D 2016 J. Phys.: Conf. Ser. 706 022003
[29] Eichmann G, Sanchis-Alepuz H, Williams R, Alkofer R, and Fischer C S 2016 Prog. Part. Nucl. Phys. 91 1
[30] Mezrag C and Salmè G 2020 arXiv:2006.15947 [hep-ph]
[31] Qin S X and Roberts C D 2020 Chin. Phys. Lett. 37 121201
[32] Chang L and Roberts C D 2009 Phys. Rev. Lett. 103 081601
[33] Fischer C S and Williams R 2009 Phys. Rev. Lett. 103 122001
[34] Chang L and Roberts C D 2012 Phys. Rev. C 85 052201(R)
[35] Williams R, Fischer C S, and Heupel W 2016 Phys. Rev. D 93 034026
[36] Binosi D, Chang L, Qin S X, Papavassiliou J, and Roberts C D 2016 Phys. Rev. D 93 096010
[37] Qin S X, Chang L, Liu Y X, Roberts C D, and Schmidt S M 2013 Phys. Lett. B 722 384
[38] Qin S X, Roberts C D, and Schmidt S M 2014 Phys. Lett. B 733 202
[39] Bashir A, Bermúdez R, Chang L, and Roberts C D 2012 Phys. Rev. C 85 045205
[40] Rojas E, de Melo J P B C, El-Bennich B, Oliveira O, and Frederico T 2013 J. High Energy Phys. 2013(10) 193
[41] Aguilar A C, Binosi D, Ibañez D, and Papavassiliou J 2014 Phys. Rev. D 90 065027
[42] Mitter M, Pawlowski J M, and Strodthoff N 2015 Phys. Rev. D 91 054035
[43] Bermudez R, Albino L, Gutiérrez-Guerrero L X, Tejeda-Yeomans M E, and Bashir A 2017 Phys. Rev. D 95 034041
[44] Qin S X, Chang L, Liu Y X, Roberts C D, and Wilson D J 2011 Phys. Rev. C 84 042202(R)
[45] Chang L, Liu Y X, and Roberts C D 2011 Phys. Rev. Lett. 106 072001
[46] Qin S X, Chang L, Liu Y X, Roberts C D, and Wilson D J 2012 Phys. Rev. C 85 035202
[47] Binosi D, Chang L, Papavassiliou J, and Roberts C D 2015 Phys. Lett. B 742 183
[48] Aguilar A C, Binosi D, and Papavassiliou J 2016 Front. Phys. 11 111203
[49] Cui Z F et al. 2020 Chin. Phys. C 44 083102
[50] Huber M Q 2020 Phys. Rep. 879 1
[51] Chen M, Ding M, Chang L, and Roberts C D 2018 Phys. Rev. D 98 091505(R)
[52] Ding M H et al. 2019 Phys. Rev. D 99 014014
[53] Ding M H et al. 2020 Chin. Phys. C 44 031002
[54] Cui Z F et al. 2021 Eur. Phys. J. A 57 5
[55] Cui Z F et al. 2020 Eur. Phys. J. C 80 1064
[56] Yin P L et al. 2019 Phys. Rev. D 100 034008
[57] Munczek H J 1995 Phys. Rev. D 52 4736
[58] Bender A, Roberts C D, and von Smekal L 1996 Phys. Lett. B 380 7
[59] Binosi D, Chang L, Papavassiliou J, Qin S X, and Roberts C D 2017 Phys. Rev. D 95 031501(R)
[60] Skullerud J I, Bowman P O, Kızılersü A, Leinweber D B, and Williams A G 2003 J. High Energy Phys. 2003(04) 047
[61] Kızılersü A, Leinweber D B, Skullerud J I, and Williams A G 2007 Eur. Phys. J. C 50 871
[62] Maris P, Roberts C D, and Tandy P C 1998 Phys. Lett. B 420 267
[63] Gell-Mann M, Oakes R J, and Renner B 1968 Phys. Rev. 175 2195
[64] Roberts C D 1996 arXiv:nucl-th/9609039
[65] Krassnigg A 2009 Phys. Rev. D 80 114010
[66] Krassnigg A and Blank M 2011 Phys. Rev. D 83 096006
[67] Adnan B et al. 2012 Commun. Theor. Phys. 58 79
[68] Xu S S et al. 2019 Eur. Phys. J. A 55 113
[69] Weinberg S 1967 Phys. Rev. Lett. 18 507
[70] Höll A, Maris P, Roberts C D, and Wright S V 2006 Nucl. Phys. B Proc. Suppl. 161 87
[71] Eichmann G, Fischer C S, and Heupel W 2016 Phys. Lett. B 753 282
[72] Santowsky N, Eichmann G, Fischer C S, Wallbott P C, and Williams R 2020 Phys. Rev. D 102 056014
[73] Pelaez J R and Rios G 2006 Phys. Rev. Lett. 97 242002
Related articles from Frontiers Journals
[1] Si-Xue Qin and C. D. Roberts. Impressions of the Continuum Bound State Problem in QCD[J]. Chin. Phys. Lett., 2020, 37(12): 071201
[2] JIANG Yue, WANG Guo-Li, WANG Tian-Hong, JU Wan-Li. Semileptonic Production of Scalar and Tensor p-Wave Charmed Mesons[J]. Chin. Phys. Lett., 2013, 30(10): 071201
[3] FU Hui-Feng, WANG Guo-Li**, WANG Zhi-Hui, CHEN Xiang-Jun . Semi-Leptonic and Non-Leptonic B Meson Decays to Charmed Mesons[J]. Chin. Phys. Lett., 2011, 28(12): 071201
[4] XIE Chuan-Mei, LI Heng-Mei, WAN Shao-Long. An Electromagnetic Form Factor of a Charged Scalar Meson with Schwinger-Dyson and Bethe-Salpeter Equations[J]. Chin. Phys. Lett., 2009, 26(7): 071201
[5] LI Heng-Mei, WAN Shao-Long. Decay Constants of Vector Mesons[J]. Chin. Phys. Lett., 2008, 25(4): 071201
[6] LI Heng-Mei, CHEN Ning, WANG Zhi-Gang, WAN Shao-Long. Electromagnetic Form Factor of Charged Scalar Meson[J]. Chin. Phys. Lett., 2007, 24(10): 071201
[7] Lalit K. Sharma, Joseph Fiase. Bound State Solutions of the Dirac Equation for the Kratzer Potential[J]. Chin. Phys. Lett., 2004, 21(10): 071201
[8] WANG Zhi-Gang, WAN Shao-Long, WANG Ke-Lin. Calculation of the π Meson Electromagnetic Form Factor[J]. Chin. Phys. Lett., 2001, 18(6): 071201
[9] JIANG Wei-zhou, ZHU Zhi-yuan, QIU Xi-jun. Relativistic Density-Dependent Hartree Approach for Nuclear Matter in the Chiral-Symmetry-Breaking Model[J]. Chin. Phys. Lett., 1996, 13(6): 071201
[10] WAN Shaolong, ZHOU Jiange, CHEN Qinghu, WANG Kelin. Calculations of the Decay Constant and Radius of the Pion[J]. Chin. Phys. Lett., 1995, 12(3): 071201
[11] DONG Yubing, SU Junchen, WU Shishu. Retardation Effect on Baryon Spectra[J]. Chin. Phys. Lett., 1993, 10(2): 071201
Viewed
Full text


Abstract