Chin. Phys. Lett.  2021, Vol. 38 Issue (6): 068202    DOI: 10.1088/0256-307X/38/6/068202
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
LiCoO$_{2}$ Epitaxial Film Enabling Precise Analysis of Interfacial Degradations
Changdong Qin1, Le Wang2, Pengfei Yan1*, Yingge Du2*, and Manling Sui1*
1Beijing Key Laboratory of Microstructure and Property of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
2Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory Richland, WA 99354, USA
Cite this article:   
Changdong Qin, Le Wang, Pengfei Yan et al  2021 Chin. Phys. Lett. 38 068202
Download: PDF(3045KB)   PDF(mobile)(2271KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Interfacial structure evolution and degradation are critical to the electrochemical performance of LiCoO$_{2}$ (LCO), the most widely studied and used cathode material in lithium ion batteries. To understand such processes requires precise and quantitative measurements. Herein, we use well-defined epitaxial LCO thin films to reveal the interfacial degradation mechanisms. Through our systematical investigations, we find that surface corrosion is significant after forming the surface phase transition layer, and the cathode electrolyte interphase (CEI) has a double layer structure, an inorganic inner layer containing CoO, LiF, LiOH/Li$_{2}$O and Li$_{x}$PF$_{y}$O$_{z}$, and an outmost layer containing Li$_{2}$CO$_{3}$ and organic carbonaceous components. Furthermore, surface cracks are found to be pronounced due to mechanical failures and chemical etching. This work demonstrates a model material to realize the precise measurements of LCO interfacial degradations, which deepens our understanding on the interfacial degradation mechanisms.
Received: 09 February 2021      Published: 25 May 2021
PACS:  82.47.Aa (Lithium-ion batteries)  
  68.37.Lp (Transmission electron microscopy (TEM))  
  87.64.Ee (Electron microscopy)  
Fund: Supported by the National Natural Science Fund for Innovative Research Groups (China) (Grant No. 51621003), the National Key Research and Development Program of China (Grant No. 2016Yu7FB0700700), the Beijing Municipal Fund for Scientific Innovation (Grant No. PXM2019_014204_500031) and the Beijing Municipal High Level Innovative Team Building Program (Grant No. IDHT20190503). The film growth is supported by the U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Science, Early Career Research Program under Award #68272, and performed using EMSL (grid.436923.9), a DOE Office of the Science User Facility sponsored by the Biological and Environmental Research Program.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/38/6/068202       OR      https://cpl.iphy.ac.cn/Y2021/V38/I6/068202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Changdong Qin
Le Wang
Pengfei Yan
Yingge Du
and Manling Sui
[1] Goodenough J B and Kim Y 2010 Chem. Mater. 22 587
[2] Li H, Wang Z, Chen L, and Huang X 2009 Adv. Mater. 21 4593
[3] Liu Q, Su X, Lei D, Qin Y, Wen J, Guo F, Wu Y A, Rong Y, Kou R, Xiao X, Aguesse F, Bareño J, Ren Y, Lu W, and Li Y 2018 Nat. Energy 3 936
[4] Zhang J N, Li Q, Ouyang C, Yu X, Ge M, Huang X, Hu E, Ma C, Li S, Xiao R, Yang W, Chu Y, Liu Y, Yu H, Yang X Q, Huang X, Chen L, and Li H 2019 Nat. Energy 4 594
[5] Wang Y, Zhang Q, Xue Z C, Yang L, Wang J, Meng F, Li Q, Pan H, Zhang J N, Jiang Z, Yang W, Yu X, Gu L, and Li H 2020 Adv. Energy Mater. 10 2001413
[6] Amatucci G G, Tarascon J M, and Klein L C 1996 Solid State Ionics 83 167
[7] Wang H, Rus E, Sakuraba T, Kikuchi J, Kiya Y, and Abruna H D 2014 Anal. Chem. 86 6197
[8] Yano A, Shikano M, Ueda A, Sakaebe H, and Ogumi Z 2017 J. Electrochem. Soc. 164 A6116
[9] Lu W, Zhang J, Xu J, Wu X, and Chen L 2017 ACS Appl. Mater. & Interfaces 9 19313
[10] Zhang J N, Li Q, Wang Y, Zheng J, Yu X, and Li H 2018 Energy Storage Mater. 14 1
[11] Lu Y C, Mansour A N, Yabuuchi N, and Shao-Horn Y 2009 Chem. Mater. 21 4408
[12] Gabrisch H, Yazami R, and Fultz B 2004 J. Electrochem. Soc. 151 A891
[13] Reimers J N 1992 J. Electrochem. Soc. 139 2091
[14] Kikkawa J, Terada S, Gunji A, Nagai T, Kurashima K, and Kimoto K 2015 J. Phys. Chem. C 119 15823
[15] Kikkawa J, Terada S, Gunji A, Haruta M, Nagai T, Kurashima K, and Kimoto K 2014 Appl. Phys. Lett. 104 114105
[16] Xu K 2014 Chem. Rev. 114 11503
[17] Choi N S, Han J G, Ha S Y, Park I, and Back C K 2015 RSC Adv. 5 2732
[18] Aurbach D, Markovsky B, Salitra G, Markevich E, Talyossef Y, Koltypin M, Nazar L, Ellis B, and Kovacheva D 2007 J. Power Sources 165 491
[19] Gauthier M, Carney T J, Grimaud A, Giordano L, Pour N, Chang H H, Fenning D P, Lux S F, Paschos O, Bauer C, Maglia F, Lupart S, Lamp P, and Shao-Horn Y 2015 J. Phys. Chem. Lett. 6 4653
[20] Wang J, Ji Y, Appathurai N, Zhou J, and Yang Y 2017 Chem. Commun. 53 8581
[21] Jung S K, Gwon H, Hong J, Park K Y, Seo D H, Kim H, Hyun J, Yang W, and Kang K 2014 Adv. Energy Mater. 4 1300787
[22] Zhao W, Zheng J, Zou L, Jia H, Liu B, Wang H, Engelhard M H, Wang C, Xu W, Yang Y, and Zhang J G 2018 Adv. Energy Mater. 8 1800297
[23] Wang H, Jang Y I I, Huang B, Sadoway D R, and Chiang Y M 1999 J. Electrochem. Soc. 146 473
[24] Yan P, Xiao L, Zheng J, Zhou Y, He Y, Zu X, Mao S X, Xiao J, Gao F, Zhang J G, and Wang C M 2015 Chem. Mater. 27 975
[25] Peled E, Golodnitsky D, and Ardel G 1997 J. Electrochem. Soc. 144 L208
[26] Aurbach D, Weissman I, and Schechter A 1996 Langmuir 12 3991
[27] Verdier S, El O L, Dedryvère R, Bonhomme F, Biensan P, and Gonbeau D 2007 J. Electrochem. Soc. 154 A1088
[28] Minato T, Kawaura H, Hirayama M, Taminato S, Suzuki K, Yamada N L, Sugaya H, Yamamoto K, Nakanishi K, Orikasa Y, Tanida H, Kanno R, Arai H, Uchimoto Y, and Ogumi Z 2016 J. Phys. Chem. C 120 20082
[29] Xia Q, Sun S, Xu J, Zan F, Yue J, Zhang Q, Gu L, and Xia H 2018 Small 14 1804149
[30] Nishio K, Ohnishi T, Akatsuka K, and Takada K 2014 J. Power Sources 247 687
[31] Tan H, Takeuchi S, Bharathi K K, Takeuchi I, and Bendersky L A 2016 ACS Appl. Mater. & Interfaces 8 6727
[32] Yasuhara S, Yasui S, Teranishi T, Chajima K, Yoshikawa Y, Majima Y, Taniyama T, and Itoh M 2019 Nano Lett. 19 1688
[33] Takeuchi S, Tan H, Bharathi K K, Stafford G R, Shin J, Yasui S, Takeuchi I, and Bendersky L A 2015 ACS Appl. Mater. & Interfaces 7 7901
[34] Yang Z, Ong P V, He Y, Wang L, Bowden M E, Xu W, Droubay T C, Wang C, Sushko P V, and Du Y 2018 Small 14 1803108
[35] Hirooka M, Sekiya T, Omomo Y, Yamada M, Katayama H, Okumura T, Yamada Y, and Ariyoshi K 2019 Electrochim. Acta 320 134596
[36] Qin C, Jiang Y, Yan P, and Sui M 2020 J. Power Sources 460 228126
[37] Cherkashinin G, Nikolowski K, Ehrenberg H, Jacke S, Dimesso L, and Jaegermann W 2012 Phys. Chem. Chem. Phys. 14 12321
[38] Jiang Y, Yan P, Yu M, Li J, Jiao H, Zhou B, and Sui M 2020 Nano Energy 78 105364
[39] Wilson J R, Cronin J S, Barnett S A, and Harris S J 2011 J. Power Sources 196 3443
Viewed
Full text


Abstract