Chin. Phys. Lett.  2021, Vol. 38 Issue (6): 067401    DOI: 10.1088/0256-307X/38/6/067401
NMR Evidence of Antiferromagnetic Spin Fluctuations in Nd$_{0.85}$Sr$_{0.15}$NiO$_2$
Yi Cui1†, Cong Li1†, Qing Li2†, Xiyu Zhu2, Ze Hu1, Yi-feng Yang3, Jinshan Zhang4, Rong Yu1*, Hai-Hu Wen2*, and Weiqiang Yu1*
1Department of Physics and Beijing Key Laboratory of Opto-electronic Functional Materials & Micro-nano Devices, Renmin University of China, Beijing 100872, China
2National Laboratory of Solid State Microstructures and Department of Physics, Center for Superconducting Physics and Materials, Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing 210093, China
3Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
4Mathematics and Physics Department, North China Electric Power University, Beijing 102206, China
Cite this article:   
Yi Cui, Cong Li, Qing Li et al  2021 Chin. Phys. Lett. 38 067401
Download: PDF(689KB)   PDF(mobile)(815KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Despite the recent discovery of superconductivity in Nd$_{1-x}$Sr$_{x}$NiO$_2$ thin films, the absence of superconductivity and antiferromagnetism in their bulk materials remains a puzzle. Here we report the $^{1}$H NMR measurements on powdered Nd$_{0.85}$Sr$_{0.15}$NiO$_2$ samples by taking advantage of the enriched proton concentration after hydrogen annealing. We find a large full width at half maximum of the spectrum, which keeps increasing with decreasing the temperature $T$ and exhibits an upturn behavior at low temperatures. The spin-lattice relaxation rate $^{1}T_1^{-1}$ is strongly enhanced when lowering the temperature, developing a broad peak at about 40 K, then decreases following a spin-wave-like behavior $^{1}T_1^{-1}\propto T^2$ at lower temperatures. These results evidence a short-range glassy antiferromagnetic ordering of magnetic moments below 40 K and dominant antiferromagnetic fluctuations extending to much higher temperatures. Our findings reveal the strong electron correlations in bulk Nd$_{0.85}$Sr$_{0.15}$NiO$_2$, and shed light on the mechanism of superconductivity observed in films of nickelates.
Received: 21 March 2021      Published: 25 May 2021
PACS:  74.62.Dh (Effects of crystal defects, doping and substitution)  
  74.70.-b (Superconducting materials other than cuprates)  
  74.25.nj (Nuclear magnetic resonance)  
  74.25.-q (Properties of superconductors)  
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 51872328, 11674392, 11774401, and A0402/11927809), the National Key R&D Program of China (Grant Nos. 2016YFA0300504 and 2016YFA0300401), China Postdoctoral Science Foundation (Grant No. 2020M680797), the Fundamental Research Funds for the Central Universities, and the Research Funds of Renmin University of China (Grant Nos. 18XNLG24, 20XNLG19, and 21XNLG18).
URL:       OR
E-mail this article
E-mail Alert
Articles by authors
Yi Cui
Cong Li
Qing Li
Xiyu Zhu
Ze Hu
Yi-feng Yang
Jinshan Zhang
Rong Yu
Hai-Hu Wen
and Weiqiang Yu
[1] Li D, Lee K, Wang B, Osada M, Crossley S, Lee H R, Cui Y, Hikita Y, and Hwang H Y 2019 Nature 572 624
[2] Li D, Wang B, Lee K, Harvey S P, Osada M, Goodge B H, Kourkoutis L F, and Hwang H Y 2020 Phys. Rev. Lett. 125 027001
[3] Azuma M, Hiroi Z, Takano M, Bando Y, and Takeda Y 1992 Nature 356 775
[4] Anisimov V I, Bukhvalov D, and Rice T M 1999 Phys. Rev. B 59 7901
[5] Botana A S and Norman M R 2020 Phys. Rev. X 10 011024
[6] Fujimori A 2019 J. Club For Condens. Matter Phys. DOI:10.36471/JCCM_December_2019_02
[7] Liang Z J, Jiang R, and Ku W 2020 arXiv:2005.00022 [cond-mat.supr-con]
[8] Norman M R 2020 Physics 13 85
[9] Ryee S, Yoon H, Kim T J, Jeong M Y, and Han M J 2020 Phys. Rev. B 101 064513
[10] Wu X, Sante D D, Schwemmer T, Hanke W, Hwang H Y, Raghu S, and Thomale R 2020 Phys. Rev. B 101 060504(R)
[11] Zhang G M, Yang Y F, and Zhang F C 2020 Phys. Rev. B 101 020501(R)
[12]Goodge B H, Li D, Lee K, Osada M, Wang B Y, Sawatzky G A, Hwang H Y, and Kourkoutis L F 2020 Proc. Natl. Acad. Sci. USA 12 118
[13] Karp J, Hampe A, Zing M, Botana A S, Park H, Norman M R, and Millis A J 2020 Phys. Rev. B 102 245130
[14] Jiang M, Berciu M, and Sawatzky G A 2020 Phys. Rev. Lett. 124 207004
[15] Bocquet A E, Mizokawa T, Morikawa K, Fujimori A, Barman S R, Maiti K, Sarma D D, Tokura Y, and Onoda M 1996 Phys. Rev. B 53 1161
[16] Hepting M, Li D, Jia C J, Lu H, Paris E, Tseng Y, Feng X, Osada M, Been E, Hikita Y, Chuang Y D, Hussain Z, Zhou K J, Nag A, Garcia-Fernandez M, Rossi M, Huang H Y, Huang D J, Shen Z X, Schmitt T, Hwang H Y, Moritz B, Zaanen J, Devereaux T P, and Lee W S 2020 Nat. Mater. 19 381
[17] Lee K W and Pickett W E 2004 Phys. Rev. B 70 165109
[18] Choi M Y, Lee K W, and Pickett W E 2020 Phys. Rev. B 101 020503(R)
[19] Gu Y, Zhu S, Wang X, Hu J, and Chen H 2020 Commun. Phys. 3 84
[20] Chaloupka J and Khaliullin G 2008 Phys. Rev. Lett. 100 016404
[21] Leonov I, Skornyakov S L, and Savrasov S Y 2020 Phys. Rev. B 101 241108(R)
[22] Mandal P, Patel R K, Rout D, Banerjee R, Bag R, Karmakar K, Narayan A, Freeland J W, Singh S, and Middey S 2021 Phys. Rev. B 103 L060504
[23] Wang Y, Kang C J, Miao H, and Kotliar G 2020 Phys. Rev. B 102 161118(R)
[24] Li Q, He C, Si J, Zhu X, Zhang Y, and Wen H H 2020 Commun. Mater. 1 16
[25] Hayward M A, Green M A, Rosseinksky M J, and Sloan J 1999 J. Am. Chem. Soc. 121 8843
[26] Hayward M A and Rosseinsky M J 2003 Solid State Sci. 5 839
[27] Wang B X, Zheng H, Krivyakina E, Chmaissem O, Lopes P P, Lynn J W, Gallington L C, Ren Y, Rosenkranz S, Mitchell J F, and Phelan D 2020 Phys. Rev. Mater. 4 084409
[28] Shao Y T, Hong W S, Li S L, Li Z, and Luo J L 2019 Chin. Phys. Lett. 36 127401
[29] Wu Q, Zhou H, Wu Y, Hu L, Ni S, Tian Y, Sun F, Zhou F, Dong X, Zhao Z, and Zhao J 2020 Chin. Phys. Lett. 37 097802
[30] Jia Y T, Gong C S, Liu Y X, Zhao J F, Dong C, Dai G Y, Li X D, Lei H C, Yu R Z, Zhang G M, and Jin C Q 2020 Chin. Phys. Lett. 37 097404
[31] Liu Z Y, Dong Q X, Shan P F, Wang Y Y, Dai J H, Jana R, Chen K Y, Sun J P, Wang B S, Yu X H, Liu G T, Uwatoko Y, Sui Y, Yang H X, Chen G F, and Cheng J G 2020 Chin. Phys. Lett. 37 047102
[32] Li Q, He C, Zhu X, Si J, Fan X, and Wen H H 2021 Sci. Chin. Phys. Mech. & Astron. 64 227411
[33] Moriya T 1963 J. Phys. Soc. Jpn. 18 516
[34] Li B Z, Wang C, Yang P T, Sun J P, Liu Y B, Wu J, Ren Z, Cheng J G, Zhang G M, and Cao G H 2020 Phys. Rev. B 101 195142
[35] Kiefl R F, Brewer J H, Carolan J, Dosanjh P, Hardy W N, Kadono R, Kempton J R, Krahn R, Schleger P, Yang B X, Zhou H, Luke G M, Sternlieb B, Uemura Y J, Kossler W J, Yu X H, Ansaldo E J, Takagi H, Uchida S, and Seaman C L 1989 Phys. Rev. Lett. 63 2136
[36]Abragam A 1961 Principles of Nuclear Magnetism (Oxford: Oxford University Press)
[37] Alonso J A, Martínez-Lope M J, and Hidalgo M A 1995 J. Solid State Chem. 116 146
[38] Retoux R, Rodriguez-Carvaja J, and Lacorre P 1998 J. Solid State Chem. 140 307
[39] Caviglia A D, Först M, Scherwitzl R, Khanna V, Bromberger H, Mankowsky R, Singla R, Chuang Y D, Lee W S, Krupin O, Schlotter W F, Turner J J, Dakovski G L, Minitti M P, Robinson J, Scagnoli V, Wilkins S B, Cavill S A, Gibert M, Gariglio S, Zubko P, Triscone J M, Hill J P, Dhesi S S, and Cavalleri A 2013 Phys. Rev. B 88 220401(R)
[40] Kumar D, Rajeev K P, Alonso J A, and Martínez-Lope M J 2013 Phys. Rev. B 88 014410
[41] Hooda M K and Yadav C S 2016 Physica B 491 31
[42] Scagnoli V, Staub U, Bodenthin Y, García-Fernández M, Mulders A M, Meijer G I, and Hammerl G 2008 Phys. Rev. B 77 115138
[43] Olafsen A, Fjellvåg H, and Hauback B C 2000 J. Solid State Chem. 151 46
[44] Cui Y, Zhang G, Li H, Lin H, Zhu X, Wen H H, Wang G, Sun J, Ma M, Li Y, Gong D, Xie T, Gu Y, Li S, Luo H, Yu P, and Yu W 2018 Sci. Bull. 63 11
[45] Cui Y, Hu Z, Zhang J, Ma W, Ma M, Ma Z, Wang C, Yan J, Sun J, Cheng J, Jia S, Li Y, Wen J, Lei H, Yu P, Ji W, and Yu W 2019 Chin. Phys. Lett. 36 077401
[46] Wei X, Li H B, Zhang Q, Li D, Qin M, Xu L, Hu W, Huan Q, Yu L, Miao J, Yuan J, Zhu B, Kusmartseva A, Kusmartsev F V, Silhanek A V, Xiang T, Yu W, Lin Y, Gu L, Yu P, Chen Q, and Jin K 2020 Sci. Bull. 65 1607
[47] Si L, Xiao W, Kaufmann J, Tomczak J M, Lu Y, Zhong Z, and Held K 2020 Phys. Rev. Lett. 124 166402
[48] Liu Z, Ren Z, Zhu W, Wang Z, and Yang J 2020 npj Quantum Mater. 5 31
[49]Lebed A G 2008 The Physics of Organic Superconductors and Conductors, Springer Series in Materials Science (Berlin: Springer) vol 110
[50] Rossi M, Lu H, Nag A, Li D, Osada M, Lee K, Wang B Y, Agrestini S, Garcia-Fernandez M, Chuang Y D, Shen Z X, Hwang H Y, Moritz B, Zhou K J, Devereaux T P, and Lee W S 2020 arXiv:2011.00595 [cond-mat.str-el]
[51] Zhang Y H and Vishwanath A 2020 Phys. Rev. Res. 2 023112
[52]Hewson A C 2009 The Kondo Problem to Heavy Fermions (Cambridge: Cambridge University Press)
[53] Wang Q Y, Li Z, Zhang W H, Zhang Z C, Zhang J S, Li W, Ding H, Ou Y B, Deng P, Chang K, Wen J, Song C L, He K, Jia J F, Ji S H, Wang Y Y, Wang L L, Chen X, Ma X C, and Xue Q K 2012 Chin. Phys. Lett. 29 037402
[54] Li Z X, Wang F, Yao H, and Lee D H 2016 Sci. Bull. 61 925
Related articles from Frontiers Journals
[1] Hui-Fei Zhai, Bo Lin, Pan Zhang, Hao Jiang, Yu-Ke Li, and Guang-Han Cao. Combined Study of Structural, Magnetic and Transport Properties of Eu$_{0.5}$$Ln$$_{0.5}$BiS$_{2}$F Superconductor[J]. Chin. Phys. Lett., 2021, 38(4): 067401
[2] Bo Feng, Guang-Qiang Li, Xiao-Ming Hu, Pei-Hai Liu, Ru-Song Li, Yang-Lin Zhang, Ya-Wei Li, Zhu He, Xi-An Fan. Improvement of Thermoelectric Performance in BiCuSeO Oxide by Ho Doping and Band Modulation[J]. Chin. Phys. Lett., 2020, 37(3): 067401
[3] Yi Cui, Ze Hu, Jin-Shan Zhang, Wen-Long Ma, Ming-Wei Ma, Zhen Ma, Cong Wang, Jia-Qiang Yan, Jian-Ping Sun, Jin-Guang Cheng, Shuang Jia, Yuan Li, Jin-Sheng Wen, He-Chang Lei, Pu Yu, Wei Ji, Wei-Qiang Yu. Ionic-Liquid-Gating Induced Protonation and Superconductivity in FeSe, FeSe$_{0.93}$S$_{0.07}$, ZrNCl, 1$T$-TaS$_2$ and Bi$_2$Se$_3$[J]. Chin. Phys. Lett., 2019, 36(7): 067401
[4] Pei GONG, Ya-Lin LI, Ya-Hui JIA, Xiao-Yong FANG. First Principle Study on Optical Properties of Tri-Group Doped (6,6) SiC Nanotubes[J]. Chin. Phys. Lett., 2018, 35(11): 067401
[5] Ji-Xiang Gong, Jun Yang, Min Ge, Yong-Jian Wang, Dan-Dan Liang, Lei Luo, Xiu Yan, Wei-Li Zhen, Shi-Rui Weng, Li Pi, Chang-Jin Zhang, Wen-Ka Zhu. Non-Stoichiometry Effects on the Extreme Magnetoresistance in Weyl Semimetal WTe$_{2}$[J]. Chin. Phys. Lett., 2018, 35(9): 067401
[6] Shu Chen, Jian-Kui Hao, Lin Lin, Feng Zhu, Li-Wen Feng, Fang Wang, Hua-Mu Xie, Xin Guo, Meng Chen, Sheng-Wen Quan, Ke-Xin Liu. Successful Nitrogen Doping of 1.3GHz Single Cell Superconducting Radio-Frequency Cavities[J]. Chin. Phys. Lett., 2018, 35(3): 067401
[7] Dong-Yun Chen, Jia Yu, Bin-Bin Ruan, Qi Guo, Lei Zhang, Qing-Ge Mu, Xiao-Chuan Wang, Bo-Jin Pan, Gen-Fu Chen, Zhi-An Ren. Superconductivity in Undoped CaFe$_{2}$As$_{2}$ Single Crystals[J]. Chin. Phys. Lett., 2016, 33(06): 067401
[8] Wei-Ke Wang, Yan Liu, Ji-Yong Yang, Hai-Feng Du, Wei Ning, Lang-Sheng Ling, Wei Tong, Zhe Qu, Zhao-Rong Yang, Ming-Liang Tian, Yu-Heng Zhang. The 45K Onset Superconductivity and the Suppression of the Nematic Order in FeSe by Electrolyte Gating[J]. Chin. Phys. Lett., 2016, 33(05): 067401
[9] HONG Xiao-Chen, WANG Ai-Feng, ZHANG Zhen, PAN Jian, HE Lan-Po, LUO Xi-Gang, CHEN Xian-Hui, LI Shi-Yan. Doping Evolution of the Superconducting Gap Structure in Heavily Hole-Doped Ba1−xKxFe2As2: a Heat Transport Study[J]. Chin. Phys. Lett., 2015, 32(12): 067401
[10] ZHANG Xin, LIU Jian, LI Yi, SU Wen-Bin, LI Ji-Chao, ZHU Yuan-Hu, LI Mao-Kui, WANG Chun-Ming, WANG Chun-Lei. Enhancement of Thermoelectric Performance of Sr0.9Ba0.1Ti0.8Nb0.2O3 Ceramics by A-Site Cation Nonstoichiometry[J]. Chin. Phys. Lett., 2015, 32(03): 067401
[11] LUO Qiang, LIU Lin-Fei, XIAO Gui-Na, LI Yi-Jie. Effect of the O2/Ar Pressure Ratio on the Microstructure and Surface Morphology of Epi-MgO/IBAD-MgO Templates for GdBa2Cu3O7−δ Coated Conductors[J]. Chin. Phys. Lett., 2014, 31(03): 067401
[12] CHEN Shou-Xiang, YANG Xiu-Lun, MENG Xiang-Feng, DONG Guo-Yan, WANG Yu-Rong, WANG Lin-Hui, HUANG Zhe . Improvement of the Focusing Resolution of Photonic Crystal Negative Refraction Imaging with a Hollow Component Structure[J]. Chin. Phys. Lett., 2013, 30(5): 067401
[13] ZHANG Qi, SONG San-Nian, XU Feng. Sb Rich Ge2Sb5Te5 Alloy for High-Speed Phase Change Random Access Memory Applications[J]. Chin. Phys. Lett., 2012, 29(10): 067401
[14] CHEN Yi-Xin**, SHEN Guang-Di, ZHU Yan-Xu, GUO Wei-Ling, LI Jian-Jun . Efficiency-enhanced AlGaInP Light-Emitting Diodes with Thin Window Layers and Coupled Distributed Bragg Reflectors[J]. Chin. Phys. Lett., 2011, 28(6): 067401
[15] MU Gang, ZENG Bin, CHENG Peng, WANG Zhao-Sheng, FANG Lei, SHEN Bing, SHAN Lei, REN Cong, WEN Hai-Hu. Sizable Residual Quasiparticle Density of States Induced by Impurity Scattering Effect in Ba(Fe1-xCox)2As2 Single Crystals[J]. Chin. Phys. Lett., 2010, 27(3): 067401
Full text