Chin. Phys. Lett.  2021, Vol. 38 Issue (5): 058201    DOI: 10.1088/0256-307X/38/5/058201
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Electrochemical Behavior of Vanadium Carbide in Neutral Aqueous Electrolytes
Chaofan Chen1, Di Pang1, Xiaotong Wang1, Gang Chen1,2, Fei Du1,2*, and Yu Gao1*
1Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, China
2State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
Cite this article:   
Chaofan Chen, Di Pang, Xiaotong Wang et al  2021 Chin. Phys. Lett. 38 058201
Download: PDF(1818KB)   PDF(mobile)(0KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The V$_{2}$C compound, belonging to the group of two-dimensional transition metal carbonitrides, or MXenes, has demonstrated a promising electrochemical performance in capacitor applications in acidic electrolytes; however, there is evidence to suggest that V$_{2}$C is unstable in an acidic environment. On the other hand, the performance of V$_{2}$C in neutral aqueous electrolytes is still moderate, and has not yet been systematically studied. The charge storage mechanism in a V$_{2}$C electrode, employed in neutral aqueous electrolytes, is investigated via cyclic voltammetry testing and in situ x-ray diffraction (XRD). Good specific capacitances are achieved, specifically 208 F/g in 0.5 M Li$_{2}$SO$_{4}$, 225 F/g in 1 M MgSO$_{4}$, 120 F/g in 1M Na$_{2}$SO$_{4}$, and 104 F/g in 0.5 M K$_{2}$SO$_{4}$. Using in situ XRD, we observe that, during the charge and discharge process, the $c$-lattice parameter shrinks or expands by up to 0.25 Å in MgSO$_{4}$, and 0.29 Å in Li$_{2}$SO$_{4}$ which demonstrates the intercalation/de-intercalation of cations into the $d$-V$_{2}$C layer.
Received: 10 January 2021      Published: 02 May 2021
Fund: Supported by the Science & Technology Department of Jilin Province (Grant Nos. 20180101199JC and 20180101204JC), and Jilin Province/Jilin University Co-construction Project-Funds for New Materials (SXGJSF2017-3).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/38/5/058201       OR      https://cpl.iphy.ac.cn/Y2021/V38/I5/058201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Chaofan Chen
Di Pang
Xiaotong Wang
Gang Chen
Fei Du
and Yu Gao
[1] Naguib M et al 2012 ACS Nano 6 1322
[2] Naguib M et al 2014 Adv. Mater. 26 992
[3] Lukatskaya M R et al 2013 Science 341 1502
[4] Come J et al 2012 J. Electrochem. Soc. 159 A1368
[5] Zhao S S et al 2017 Energy Storage Mater. 8 42
[6] Mashtalir O et al 2015 Adv. Mater. 27 3501
[7] Dall'Agnese Y et al 2015 J. Phys. Chem. Lett. 6 2305
[8] Naguib M et al 2012 Electrochem. Commun. 16 61
[9] Ghidiu M et al 2014 Nature 516 78
[10] Wang X et al 2015 Nat. Commun. 6 6544
[11] Lukatskaya M R et al 2017 Nat. Energy 2 17105
[12] Levi M D et al 2015 Adv. Energy Mater. 5 1400815
[13] Lukatskaya M R et al 2015 Adv. Energy Mater. 5 1500589
[14] Lin Z F et al 2016 Electrochem. Commun. 72 50
[15] Mu X P et al 2019 Adv. Funct. Mater. 29 1902953
[16] Wang X H et al 2019 Nat. Energy 4 241
[17] Naguib M et al 2013 J. Am. Chem. Soc. 135 15966
[18] Bak S M et al 2017 Adv. Energy Mater. 7 1700959
[19] Wang C D et al 2018 Adv. Mater. 30 1802525
[20] Wang C D et al 2019 Small Methods 3 1900495
[21] VahidMohammadi A et al 2017 ACS Nano 11 11135
[22] Shan Q M et al 2018 Electrochem. Commun. 96 103
[23] Mashtalir O et al 2013 Nat. Commun. 4 1716
[24] Simon P and Gogotsi Y 2008 Nat. Mater. 7 845
[25] Wang G P et al 2012 Chem. Soc. Rev. 41 797
[26] Ghidiu M et al 2016 Chem. Mater. 28 3507
[27] Shi S Q et al 2016 Chin. Phys. B 25 018212
[28] Ando Y et al 2020 Adv. Funct. Mater. 30 2000820
Viewed
Full text


Abstract