Chin. Phys. Lett.  2021, Vol. 38 Issue (5): 057403    DOI: 10.1088/0256-307X/38/5/057403
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Anisotropic Superconducting Properties of Kagome Metal CsV$_{3}$Sb$_{5}$
Shunli Ni1,2†, Sheng Ma1,2†, Yuhang Zhang1,2†, Jie Yuan1,2,5, Haitao Yang1,2,3,5*, Zouyouwei Lu1,2, Ningning Wang1,2, Jianping Sun1,2, Zhen Zhao1,2, Dong Li1,2, Shaobo Liu1,2, Hua Zhang1,2, Hui Chen1,2,3,5, Kui Jin1,2,5, Jinguang Cheng1,2, Li Yu1,2,5*, Fang Zhou1,2,5, Xiaoli Dong1,2,5*, Jiangping Hu1,4, Hong-Jun Gao1,2,3,5, and Zhongxian Zhao1,2,5
1Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2University of Chinese Academy of Sciences, Beijing 100049, China
3CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
4Kavli Institute of Theoretical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
5Songshan Lake Materials Laboratory, Dongguan 523808, China
Cite this article:   
Shunli Ni, Sheng Ma, Yuhang Zhang et al  2021 Chin. Phys. Lett. 38 057403
Download: PDF(838KB)   PDF(mobile)(1520KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We systematically measure the superconducting (SC) and mixed state properties of high-quality CsV$_{3}$Sb$_{5}$ single crystals with $T_{\rm c} \sim 3.5$ K. We find that the upper critical field $H_{\rm c2}(T)$ exhibits a large anisotropic ratio of $H_{\rm c2}^{ab}/H_{\rm c2}^{c} \sim 9$ at zero temperature and fitting its temperature dependence requires a minimum two-band effective model. Moreover, the ratio of the lower critical field, $H_{\rm c1}^{ab}/H_{\rm c1}^{c}$, is also found to be larger than 1, which indicates that the in-plane energy dispersion is strongly renormalized near Fermi energy. Both $H_{\rm c1}(T)$ and SC diamagnetic signal are found to change little initially below $T_{\rm c} \sim 3.5$ K and then to increase abruptly upon cooling to a characteristic temperature of $\sim $2.8 K. Furthermore, we identify a two-fold anisotropy of in-plane angular-dependent magnetoresistance in the mixed state. Interestingly, we find that, below the same characteristic $T \sim 2.8$ K, the orientation of this two-fold anisotropy displays a peculiar twist by an angle of 60$^{\circ}$ characteristic of the Kagome geometry. Our results suggest an intriguing superconducting state emerging in the complex environment of Kagome lattice, which, at least, is partially driven by electron-electron correlation.
Received: 02 April 2021      Published: 21 April 2021
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 11834016, 11888101, 12061131005, 51771224 and 61888102), the National Key Research and Development Projects of China (Grant Nos. 2017YFA0303003 and 2018YFA0305800), the Key Research Program and Strategic Priority Research Program of Frontier Sciences of the Chinese Academy of Sciences (Grant Nos. QYZDY-SSW-SLH001, XDB33010200 and XDB25000000).
TRENDMD:   
URL:  
http://cpl.iphy.ac.cn/10.1088/0256-307X/38/5/057403       OR      http://cpl.iphy.ac.cn/Y2021/V38/I5/057403
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Shunli Ni
Sheng Ma
Yuhang Zhang
Jie Yuan
Haitao Yang
Zouyouwei Lu
Ningning Wang
Jianping Sun
Zhen Zhao
Dong Li
Shaobo Liu
Hua Zhang
Hui Chen
Kui Jin
Jinguang Cheng
Li Yu
Fang Zhou
Xiaoli Dong
Jiangping Hu
Hong-Jun Gao
and Zhongxian Zhao
[1] Anderson P W 1973 Mater. Res. Bull. 8 153
[2] Ran Y, Hermele M, Lee P A, and Wen X G 2007 Phys. Rev. Lett. 98 117205
[3] Balents L 2010 Nature 464 199
[4] Lin Z, Choi J H, Zhang Q, Qin W, Yi S, Wang P, Li L, Wang Y, Zhang H, Sun Z, Wei L, Zhang S, Guo T, Lu Q, Cho J H, Zeng C, and Zhang Z 2018 Phys. Rev. Lett. 121 096401
[5] Yin J X, Zhang S S, Chang G, Wang Q, Tsirkin S S, Guguchia Z, Lian B, Zhou H, Jiang K, Belopolski I, Shumiya N, Multer D, Litskevich M, Cochran T A, Lin H, Wang Z, Neupert T, Jia S, Lei H, and Hasan M Z 2019 Nat. Phys. 15 443
[6] Ye L, Kang M, Liu J, Von Cube F, Wicker C R, Suzuki T, Jozwiak C, Bostwick A, Rotenberg E, Bell D C, Fu L, Comin R, and Checkelsky J G 2018 Nature 555 638
[7] Yin J X, Zhang S S, Li H, Jiang K, Chang G, Zhang B, Lian B, Xiang C, Belopolski I, Zheng H, Cochran T A, Xu S Y, Bian G, Liu K, Chang T R, Lin H, Lu Z Y, Wang Z, Jia S, Wang W, and Hasan M Z 2018 Nature 562 91
[8] Liu E, Sun Y, Kumar N, Muechler L, Sun A, Jiao L, Yang S Y, Liu D, Liang A, Xu Q, Kroder J, Süß V, Borrmann H, Shekhar C, Wang Z, Xi C, Wang W, Schnelle W, Wirth S, Chen Y, Goennenwein S T B, and Felser C 2018 Nat. Phys. 14 1125
[9] Kang M, Ye L, Fang S, You J S, Levitan A, Han M, Facio J I, Jozwiak C, Bostwick A, Rotenberg E, Chan M K, Mcdonald R D, Graf D, Kaznatcheev K, Vescovo E, Bell D C, Kaxiras E, Van Den Brink J, Richter M, Prasad G M, Checkelsky J G, and Comin R 2020 Nat. Mater. 19 163
[10]Eric M K, Brenden R O, Chennan W, Stephen D W, and Michael G 2021 J. Phys.: Conden. Matter (accepted)
[11] Tan H, Liu Y, Wang Z, and Yan B 2021 arXiv:2103.06325 [cond-mat.supr-con]
[12] Feng X, Jiang K, Wang Z, and Hu J 2021 arXiv:2103.07097 [cond-mat.supr-con]
[13] Ortiz B R, Teicher S M L, Hu Y, Zuo J L, Sarte P M, Schueller E C, Abeykoon A M M, Krogstad M J, Rosenkranz S, Osborn R, Seshadri R, Balents L, He J, and Wilson S D 2020 Phys. Rev. Lett. 125 247002
[14] Ortiz B R, Sarte P M, Kenney E M, Graf M J, Teicher S M L, Seshadri R, and Wilson S D 2021 Phys. Rev. Mater. 5 034801
[15] Yin Q, Tu Z, Gong C, Fu Y, Yan S, and Lei H 2021 Chin. Phys. Lett. 38 037403
[16] Wang Y, Yang S, Sivakumar P K, Ortiz B R, Teicher S M L, Wu H, Srivastava A K, Garg C, Liu D, Parkin S S P, Toberer E S, Mcqueen T, Wilson S D, and Ali M N 2020 arXiv:2012.05898 [cond-mat.supr-con]
[17] Zhao C C, Wang L S, Xia W, Yin Q W, Ni J M, Huang Y Y, Tu C P, Tao Z C, Tu Z J, Gong C S, Lei H C, Guo Y F, Yang X F, and Li S Y 2021 arXiv:2102.08356 [cond-mat.supr-con]
[18] Chen H, Yang H, Hu B, Zhao Z, Yuan J, Xing Y, Qian G, Huang Z, Li G, Ye Y, Yin Q, Gong C, Tu Z, Lei H, Ma S, Zhang H, Ni S, Tan H, Shen C, Dong X, Yan B, Wang Z, and Gao H J 2021 arXiv:2103.09188 [cond-mat.supr-con]
[19] Duan W, Nie Z, Luo S, Yu F, Ortiz B R, Yin L, Su H, Du F, Wang A, Chen Y, Lu X, Ying J, Wilson S D, Chen X, Song Y, and Yuan H 2021 arXiv:2103.11796 [cond-mat.supr-con]
[20] Jiang Y X, Yin J X, Denner M M, Shumiya N, Ortiz B R, He J, Liu X, Zhang S S, Chang G, Belopolski I, Zhang Q, Shafayat H M, Cochran T A, Multer D, Litskevich M, Cheng Z J, Yang X P, Guguchia Z, Xu G, Wang Z, Neupert T, Wilson S D, and Zahid H M 2020 arXiv:2012.15709 [cond-mat.supr-con]
[21] Chen K Y, Wang N N, Yin Q W, Tu Z J, Gong C S, Sun J P, Lei H C, Uwatoko Y, and Cheng J G 2021 arXiv:2102.09328 [cond-mat.supr-con]
[22] Du F, Luo S, Ortiz B R, Chen Y, Duan W, Zhang D, Lu X, Wilson S D, Song Y, and Yuan H 2021 arXiv:2102.10959 [cond-mat.supr-con]
[23] Yu F H, Wu T, Wang Z Y, Lei B, Zhuo W Z, Ying J J, and Chen X H 2021 arXiv:2102.10987 [cond-mat.str-el]
[24] Liang Z, Hou X, Ma W, Zhang F, Wu P, Zhang Z, Yu F, Ying J J, Jiang K, Shan L, Wang Z, and Chen X H 2021 arXiv:2103.04760 [cond-mat.supr-con]
[25] Uykur E, Ortiz B R, Wilson S D, Dressel M, and Tsirlin A A 2021 arXiv:2103.07912 [cond-mat.str-el]
[26] Li H X, Zhang T T, Pai Y Y, Marvinney C, Said A, Yilmaz T, Yin Q, Gong C, Tu Z, Vescovo E, Moore R G, Murakami S, Lei H C, Lee H N, Lawrie B, and Miao H 2021 arXiv:2103.09769 [cond-mat.supr-con]
[27] Yang S Y, Wang Y, Ortiz B R, Liu D, Gayles J, Derunova E, Gonzalez-Hernandez R, Smejkal L, Chen Y, Parkin S S P, Wilson S D, Toberer E S, Mcqueen T, and Ali M N 2020 Sci. Adv. 6 eabb6003
[28] Zhang Z, Chen Z, Zhou Y, Yuan Y, Wang S, Zhang L, Zhu X, Zhou Y, Chen X, Zhou J, and Yang Z 2021 arXiv:2103.12507 [cond-mat.supr-con]
[29] Chen X, Zhan X, Wang X, Deng J, Liu X B, Chen X, Guo J G, and Chen X 2021 arXiv:2103.13759 [cond-mat.supr-con]
[30] Ortiz B R, Gomes L C, Morey J R, Winiarski M, Bordelon M, Mangum J S, Oswald L W H, Rodriguez-Rivera J A, Neilson J R, Wilson S D, Ertekin E, Mcqueen T M, and Toberer E S 2019 Phys. Rev. Mater. 3 094407
[31] Zhao H, Li H, Ortiz B R, Teicher S M L, Park T, Ye M, Wang Z, Balents L, Wilson S D, and Zeljkovic I 2021 arXiv:2103.03118 [cond-mat.supr-con]
[32] Gurevich A 2003 Phys. Rev. B 67 184515
[33] Werthamer N R, Helfand E, and Hohenberg P C 1966 Phys. Rev. 147 295
[34] Prozorov R and Giannetta R W 2006 Supercond. Sci. Technol. 19 R41
[35] Pan Y, Nikitin A M, Araizi G K, Huang Y K, Matsushita Y, Naka T, and De Visser A 2016 Sci. Rep. 6 28632
Viewed
Full text


Abstract