Chin. Phys. Lett.  2021, Vol. 38 Issue (5): 057306    DOI: 10.1088/0256-307X/38/5/057306
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Level Statistics Crossover of Chiral Surface States in a Three-Dimensional Quantum Hall System
Rubah Kausar1, Chao Zheng1*, and Xin Wan1,2
1Zhejiang Institute of Modern Physics, Zhejiang University, Hangzhou 310027, China
2CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
Cite this article:   
Rubah Kausar, Chao Zheng, and Xin Wan 2021 Chin. Phys. Lett. 38 057306
Download: PDF(1178KB)   PDF(mobile)(0KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Recent experiments have demonstrated the realization of the three-dimensional quantum Hall effect in highly anisotropic crystalline materials, such as ZrTe$_{5}$ and BaMnSb$_{2}$. Such a system supports chiral surface states in the presence of a strong magnetic field, which exhibit a one-dimensional metal-insulator crossover due to suppression of surface diffusion by disorder potential. We study the nontrivial surface states in a lattice model and find a wide crossover of the level-spacing distribution through a semi-Poisson distribution. We also discover a nonmonotonic evolution of the level statistics due to the disorder-induced mixture of surface and bulk states.
Received: 29 December 2020      Published: 02 May 2021
PACS:  73.43.-f (Quantum Hall effects)  
  73.20.At (Surface states, band structure, electron density of states)  
  73.20.Fz (Weak or Anderson localization)  
Fund: Supported by the National Natural Science Foundation of China (Grant No. 11674282), and the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB28000000).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/38/5/057306       OR      https://cpl.iphy.ac.cn/Y2021/V38/I5/057306
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Rubah Kausar
Chao Zheng
and Xin Wan
[1]Sarma S D and Pinczuk A 1997 Perspectives in Quantum Hall Effects: Novel Quantum Liquids in Low-Dimensional Semiconductor Structures (New York: Wiley)
[2]Prange R E, Cage M E, Klitzing K, Girvin S M, and Chang A M 2012 The Quantum Hall Effect (New York: Springer)
[3] Störmer H L, Eisenstein J P, Gossard A C, Wiegmann W, and Baldwin K 1986 Phys. Rev. Lett. 56 85
[4] Chalker J T and Dohmen A 1995 Phys. Rev. Lett. 75 4496
[5] Druist D P, Turley P J, Maranowski K D, Gwinn E G, and Gossard A C 1998 Phys. Rev. Lett. 80 365
[6] Liu J Y, Yu J, Ning J L, Yi H M, and Miao L 2019 arXiv:1907.06318 [cond-mat.mtrl-sci]
[7] Sakai H, Fujimura H, Sakuragi S, Ochi M, and Kurihara R 2020 Phys. Rev. B 101 081104(R)
[8] Halperin B I 1987 Jpn. J. Appl. Phys. 26 1913
[9] Tang F, Ren Y, Wang P, Zhong R, and Schneeloch J 2019 Nature 569 537
[10] Galeski S, Ehmcke T, Wawrzyńczak R, Lozano P, and Brando M 2020 arXiv:2005.12996 [cond-mat.str-el]
[11] Qin F, Li S, Du Z Z, Wang C M, and Zhang W 2020 Phys. Rev. Lett. 125 206601
[12] Wang P, Ren Y, Tang F, Wang P, and Hou T 2020 Phys. Rev. B 101 161201(R)
[13] Galeski S, Zhao X, Wawrzyńczak R, Meng T, and Förster T 2020 Nat. Commun. 11 5926
[14] Cooper J R, Kang W, Auban P, Montambaux G, and Jérome D 1989 Phys. Rev. Lett. 63 1984
[15] Hannahs S T, Brooks J S, Kang W, Chiang L Y, and Chaikin P M 1989 Phys. Rev. Lett. 63 1988
[16] Hill S, Uji S, Takashita M, Terakura C, and Terashima T 1998 Phys. Rev. B 58 10778
[17] Kopelevich Y, Torres J H S, da S R R, Mrowka F, and Kempa H 2003 Phys. Rev. Lett. 90 156402
[18] Bernevig B A, Hughes T L, Raghu S, and Arovas D P 2007 Phys. Rev. Lett. 99 146804
[19] Cao H, Tian J, Miotkowski I, Shen T, and Hu J 2012 Phys. Rev. Lett. 108 216803
[20] Masuda H, Sakai H, Tokunaga M, Yamasaki Y, and Miyake A 2016 Sci. Adv. 2 e1501117
[21] Huckestein B 1995 Rev. Mod. Phys. 67 357
[22] Wang X R, Wong C Y, and Xie X C 1999 Phys. Rev. B 59 R5277
[23] Balents L and Fisher M P A 1996 Phys. Rev. Lett. 76 2782
[24] Mathur H 1997 Phys. Rev. Lett. 78 2429
[25] Balents L, Fisher M P A, and Zirnbauer M R 1997 Nucl. Phys. B 483 601
[26] Gruzberg I A, Read N, and Sachdev S 1997 Phys. Rev. B 55 10593
[27] Gruzberg I A, Read N, and Sachdev S 1997 Phys. Rev. B 56 13218
[28] Cho S, Balents L, and Fisher M P A 1997 Phys. Rev. B 56 15814
[29] Plerou V and Wang Z 1998 Phys. Rev. B 58 1967
[30] Kim Y B 1996 Phys. Rev. B 53 16420
[31] Wang Z 1997 Phys. Rev. Lett. 79 4002
[32] Chalker J T and Coddington P D 1988 J. Phys. C 21 2665
[33] Kramer B, Ohtsuki T, and Kettemann S 2005 Phys. Rep. 417 211
[34] Zheng C, Yang K, and Wan X 2020 Phys. Rev. B 102 064208
[35] Efetov K B 1983 Adv. Phys. 32 53
[36] Sörensen M P and Schneider T 1991 Z. Phys. B 82 115
[37] Hofstetter E and Schreiber M 1993 Phys. Rev. B 48 16979
[38] Shklovskii B I, Shapiro B, Sears B R, Lambrianides P, and Shore H B 1993 Phys. Rev. B 47 11487
[39] Zharekeshev I K, Batsch M, and Kramer B 1996 Europhys. Lett. 34 587
[40] Mirlin A D 2000 Phys. Rep. 326 259
[41]Mehta M L 1991 Random Matrices (Academic, New York)
[42] Zheng C, Yang K, and Wan X 2021 Phys. Rev. B 103 075401
Viewed
Full text


Abstract