Chin. Phys. Lett.  2021, Vol. 38 Issue (5): 056101    DOI: 10.1088/0256-307X/38/5/056101
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Revealing the Pressure-Induced Softening/Weakening Mechanism in Representative Covalent Materials
Tengfei Xu1,2, Shihao Zhang1,2, Dominik Legut3, Stan Veprek4, and Ruifeng Zhang1,2*
1School of Materials Science and Engineering, Beihang University, Beijing 100191, China
2Center for Integrated Computational Engineering (International Research Institute for Multidisciplinary Science) and Key Laboratory of High-Temperature Structural Materials & Coatings Technology (Ministry of Industry and Information Technology), Beihang University, Beijing 100191, China
3IT4Innovations, VSB-Technical University of Ostrava, 17 listopadu 2172/15, 708 00 Ostrava, Czech Republic
4Department of Chemistry, Technical University Munich, Lichtenbergstr 4, D-85747 Garching, Germany
Cite this article:   
Tengfei Xu, Shihao Zhang, Dominik Legut et al  2021 Chin. Phys. Lett. 38 056101
Download: PDF(3891KB)   PDF(mobile)(0KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Diamond, cubic boron nitride (c-BN), silicon (Si), and germanium (Ge), as examples of typical strong covalent materials, have been extensively investigated in recent decades, owing to their fundamental importance in material science and industry. However, an in-depth analysis of the character of these materials' mechanical behaviors under harsh service environments, such as high pressure, has yet to be conducted. Based on several mechanical criteria, the effect of pressure on the mechanical properties of these materials is comprehensively investigated. It is demonstrated that, with respect to their intrinsic brittleness/ductile nature, all these materials exhibit ubiquitous pressure-enhanced ductility. By analyzing the strength variation under uniform deformation, together with the corresponding electronic structures, we reveal for the first time that the pressure-induced mechanical softening/weakening exhibits distinct characteristics between diamond and c-BN, owing to the differences in their abnormal charge-depletion evolution under applied strain, whereas a monotonous weakening phenomenon is observed in Si and Ge. Further investigation into dislocation-mediated plastic resistance indicates that the pressure-induced shuffle-set plane softening in diamond (c-BN), and weakening in Si (Ge), can be attributed to the reduction of antibonding states below the Fermi level, and an enhanced metallization, corresponding to the weakening of the bonds around the slipped plane with increasing pressure, respectively. These findings not only reveal the physical mechanism of pressure-induced softening/weakening in covalent materials, but also highlights the necessity of exploring strain-tunable electronic structures to emphasize the mechanical response in such covalent materials.
Received: 19 January 2021      Published: 02 May 2021
Fund: Supported by the National Natural Science Foundation of China (Grant No. 51672015), the National Key Research and Development Program of China (Grant Nos. 2016YFC1102500 and 2017YFB0702100), the 111 Project (Grant No. B17002), and the Fundamental Research Funds for the Central Universities. Dominik Legut was supported by the European Regional Development Fund in the IT4Innovations National Supercomputing Center—Path to Exascale Project (Grant No. CZ.02.1.01/0.0/0.0/16 013/0001791), within the Operational Programme for Research, Development and Education, and by the Large Infrastructures for Research, Experimental Development, and Innovation Project (Grant No. e-INFRA CZ-LM2018140) by the Ministry of Education, Youth, and Sport of the Czech Republic.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/38/5/056101       OR      https://cpl.iphy.ac.cn/Y2021/V38/I5/056101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Tengfei Xu
Shihao Zhang
Dominik Legut
Stan Veprek
and Ruifeng Zhang
[1] Karch K, Dietrich D, Windl W, Pavone P, Mayer A P, and Strauch D 1996 Phys. Rev. B 53 7259
[2] Zhang Y, Sun H, and Chen C F 2005 Phys. Rev. Lett. 94 145505
[3] Jenei Z, O'Bannon E F, Weir S T, Cynn H, Lipp M J, and Evans W J 2018 Nat. Commun. 9 1
[4] Semenic T, Hu J, Kraemer S, Housley R, and Sudre O 2018 J. Am. Ceram. Soc. 101 4791
[5] Tanigaki K, Ogi H, Sumiya H, Kusakabe K, Nakamura N, Hirao M, and Ledbetter H 2013 Nat. Commun. 4 2343
[6] Tian Y J, Xu B, Yu D L, Ma Y M, Wang Y B, Jiang Y B, Hu W T, Tang C C, Gao Y F, Luo K, Zhao Z S, Wang L M, Wen B, He J L, and Liu Z Y 2013 Nature 493 385
[7] Zhang R F, Zhang S H, Guo Y Q, Fu Z H, Legut D, Germann T C, and Veprek S 2019 Phys. Rep. 826 1
[8] Zhang X X, Wang Y C, Lv J, Zhu C Y, Li Q, Zhang M, Li Q, and Ma Y M 2013 J. Chem. Phys. 138 134704
[9] Tehrani A M and Brgoch J 2019 J. Solid State Chem. 271 47
[10] Xu B and Tian Y J 2015 Sci. Chin. Mater. 58 132
[11] Atabaki A H, Moazeni S, Pavanello F, Gevorgyan H, Notaros J, Alloatti L, Wade M T, Sun C, Kruger S A, Meng H Y, Qubaisi K, Wang I, Zhang B H, Khilo A, Baiocco C V, Popovic M A, Stojanovic V M, and Ram R J 2018 Nature 560 E4
[12] Guo Q L, Di Z F, Lagally M G, and Mei Y F 2018 Mater. Sci. Eng. R 128 1
[13] Zhu G J, Luo W, Wang L J, Jiang W, and Yang J P 2019 J. Mater. Chem. A 7 24715
[14] Ogata S, Li J, Hirosaki N, Shibutani Y, and Yip S 2004 Phys. Rev. B 70 104104
[15] Pizzagalli L, Demenet J L, and Rabier J 2009 Phys. Rev. B 79 045203
[16] Roundy D and Cohen M L 2001 Phys. Rev. B 64 212103
[17] Wu H, Luo X, Wen L, Sun H, and Chen C 2019 Carbon 144 161
[18] Zhang S H, Legut D, Fu Z H, Germann T C, and Zhang R F 2018 Carbon 137 156
[19] Liu C, Song X Q, Li Q, Ma Y M, and Chen C F 2020 Phys. Rev. Lett. 124 147001
[20] Liu C, Song X Q, Li Q, Ma Y M, and Chen C F 2019 Phys. Rev. Lett. 123 195504
[21] Zhang J S, Bass J D, Taniguchi T, Goncharov A F, Chang Y Y, and Jacobsen S D 2011 J. Appl. Phys. 109 063521
[22] Zhang Y, Sun H, and Chen C 2006 Phys. Rev. B 73 144115
[23] Zhang S H, Zheng X, Jin Q Q, Zheng S J, Legut D, Yu X H, Gou H Y, Fu Z H, Guo Y Q, Yan B M, Peng C, Jin C Q, Germann T C, and Zhang R F 2018 Phys. Rev. Mater. 2 123602
[24] Chen X Q, Niu H Y, Li D Z, and Li Y Y 2011 Intermetallics 19 1275
[25] Lyakhov A O and Oganov A R 2011 Phys. Rev. B 84 092103
[26] Wang J T, Chen C, Mizuseki H, and Kawazoe Y 2013 Phys. Rev. Lett. 110 165503
[27] Olijnyk H, Sikka S K, and Holzapfel W B 1984 Phys. Lett. A 103 137
[28] Umeno Y and Cerny M 2008 Phys. Rev. B 77 100101
[29]Guler E and Guler M 2015 Chin. J. Phys. 53 195
[30] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[31] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[32] Ceperley D M and Alder B J 1980 Phys. Rev. Lett. 45 566
[33] Perdew J P and Zunger A 1981 Phys. Rev. B 23 5048
[34] Methfessel M and Paxton A T 1989 Phys. Rev. B 40 3616
[35] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[36] Togo A and Tanaka I 2015 Scr. Mater. 108 1
[37] Maintz S, Deringer V L, Tchougréeff A L, and Dronskowski R 2016 J. Comput. Chem. 37 1030
[38] Nelson R, Ertural C, George J, Deringer V L, Hautier G, and Dronskowski R 2020 J. Comput. Chem. 41 1931
[39] Deringer V L, Tchougréeff A L, and Dronskowski R 2011 J. Phys. Chem. A 115 5461
[40] Dronskowski R and Blöchl P E 1993 J. Phys. Chem. 97 8617
[41] Maintz S, Deringer V L, Tchougréeff A L, and Dronskowski R 2013 J. Comput. Chem. 34 2557
[42] Zhang S H and Zhang R F 2017 Comput. Phys. Commun. 220 403
[43] Hill R 1952 Proc. Phys. Soc. A 65 349
[44] Hill R 1963 J. Mech. Phys. Solids 11 357
[45] Zhang S H, Fu Z H, and Zhang R F 2019 Comput. Phys. Commun. 238 244
[46] Guo Y Q, Zhang S H, Beyerlein I J, Legut D, Shang S L, Liu Z K, and Zhang R F 2019 Acta Mater. 181 423
[47] Wang N, Fu Z H, Legut D, Wei B, Germann T C, and Zhang R F 2019 Phys. Chem. Chem. Phys. 21 16095
[48] Zhang S H, Legut D, Germann T C, Veprek S, Zhang H J, and Zhang R F 2020 Phys. Rev. B 101 014104
[49] Zhang S H, Legut D, and Zhang R F 2019 Comput. Phys. Commun. 240 60
[50] Joos B, Ren Q, and Duesbery M S 1994 Phys. Rev. B 50 5890
[51] Schoeck G 2005 Mater. Sci. Eng. A 400–401 7
[52] Joos B and Duesber M S 1997 Phys. Rev. Lett. 78 266
[53] Blumenau A T, Jones R, Frauenheim T, Willems B, Lebedev O I, Tendeloo G V, Fisher D, and Martineau P M 2003 Phys. Rev. B 68 014115
[54] Kamimura Y, Edagawa K, Iskandarov A M, Osawa M, Umeno Y, and Takeuchi S 2018 Acta Mater. 148 355
[55] Zhang S H, Zhang Q, Liu Z R, Legut D, Germann T C, Veprek S, Zhang H J, and Zhang R F 2020 ACS Appl. Mater. & Interfaces 12 4135
[56] Legut D, Friak M, and Sob M 2007 Phys. Rev. Lett. 99 016402
Viewed
Full text


Abstract