Chin. Phys. Lett.  2021, Vol. 38 Issue (4): 047401    DOI: 10.1088/0256-307X/38/4/047401
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Physical Properties Revealed by Transport Measurements for Superconducting Nd$_{0.8}$Sr$_{0.2}$NiO$_{2}$ Thin Films
Ying Xiang1, Qing Li1, Yueying Li2, Huan Yang1*, Yuefeng Nie2, and Hai-Hu Wen1*
1National Laboratory of Solid State Microstructures and Department of Physics, Center for Superconducting Physics and Materials, Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing 210093, China
2National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
Cite this article:   
Ying Xiang, Qing Li, Yueying Li et al  2021 Chin. Phys. Lett. 38 047401
Download: PDF(1158KB)   PDF(mobile)(1110KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The newly discovered superconductivity in infinite-layer nickelate superconducting films has attracted much attention, largely because their crystalline and electronic structures are similar to those of high-$T_{\rm c}$ cuprate superconductors. The upper critical field can provide a great deal of information on the subject of superconductivity, but detailed experimental data are still lacking for these films. We present the temperature- and angle-dependence of resistivity, measured under different magnetic fields $H$ in Nd$_{0.8}$Sr$_{0.2}$NiO$_{2}$ thin films. The onset superconducting transition occurs at about 16.2 K at 0 T. Temperature-dependent upper critical fields, determined using a criterion very close to the onset transition, show a clear negative curvature near the critical transition temperature, which can be explained as a consequence of the paramagnetically limited effect on superconductivity. The temperature-dependent anisotropy of the upper critical field is obtained from resistivity data, which yields a value decreasing from 3 to 1.2 with a reduction in temperature. This can be explained in terms of the variable contribution from the orbital limit effect on the upper critical field. The angle-dependence of resistivity at a fixed temperature, and at different magnetic fields, cannot be scaled to a curve, which deviates from the prediction of the anisotropic Ginzburg–Landau theory. However, at low temperatures, the resistance difference can be scaled via the parameter $H^\beta |\cos\theta|$ ($\beta=6$–1), with $\theta$ being the angle enclosed between the $c$-axis and the applied magnetic field. As the first detailed study of the upper critical field of nickelate thin films, our results clearly indicate a small anisotropy, and a paramagnetically limited effect, in terms of superconductivity, in nickelate superconductors.
Received: 20 January 2021      Published: 06 April 2021
PACS:  74.78.-w (Superconducting films and low-dimensional structures)  
  74.25.Op (Mixed states, critical fields, and surface sheaths)  
  74.25.fc (Electric and thermal conductivity)  
Fund: Supported by the National Key R&D Program of China (Grant Nos. 2016YFA0300401 and 2018YFA0704202), the National Natural Science Foundation of China (Grant Nos. 12061131001, 11774153, and 1861161004), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB25000000), and the Fundamental Research Funds for the Central Universities (Grant No. 0213-14380167).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/38/4/047401       OR      https://cpl.iphy.ac.cn/Y2021/V38/I4/047401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ying Xiang
Qing Li
Yueying Li
Huan Yang
Yuefeng Nie
and Hai-Hu Wen
[1] Li D, Lee K, Wang B Y, Osada M, Crossley S, Lee H R, Cui Y, Hikita Y and Hwang H Y 2019 Nature 572 624
[2] Osada M, Wang B Y, Goodge B H, Lee K, Yoon H, Sakuma K, Li D, Miura M, Kourkoutis L F and Hwang H Y 2020 Nano Lett. 20 5735
[3] Lee K, Goodge B H, Li D, Osada M, Wang B Y, Cui Y, Kourkoutis L F and Hwang H Y 2020 APL Mater. 8 041107
[4] Li D, Wang B Y, Lee K, Harvey S P, Osada M, Goodge B H, Kourkoutis L F and Hwang H Y 2020 Phys. Rev. Lett. 125 027001
[5] Zeng S, Tang C S, Yin X, Li C, Huang Z, Hu J, Liu W, Omar C J, Jani H, Lim Z S, Han K, Wan D, Yang P, Wee A T S and Ariando A 2020 Phys. Rev. Lett. 125 147003
[6] Li Q, He C, Si J, Zhu X, Zhang Y and Wen H H 2020 Commun. Mater. 1 16
[7] Wang B X, Zheng H, Krivyakina E, Chmaissem O, Lopes P P, Lynn J W, Gallington L C, Ren Y, Rosenkranz S, Mitchell J F and Phelan D 2020 Phys. Rev. Mater. 4 084409
[8] Goodge B H, Li D, Lee K, Osada M, Wang B Y, Sawatzky G A, Hwang H Y and Kourkoutis L F 2021 Proc. Natl. Acad. Sci. USA 118 e2007683118
[9] Nomura Y, Hirayama M, Tadano T, Yoshimoto Y, Nakamura K and Arita R 2019 Phys. Rev. B 100 205138
[10] Choi M Y, Lee K W and Pickett W E 2020 Phys. Rev. B 101 020503(R)
[11] Botana A S and Norman M R 2020 Phys. Rev. X 10 011024
[12] Zhou T, Gao Y and Wang Z D 2020 Sci. Chin. Phys. Mech. & Astron. 63 287412
[13] Wu X, Sante D D, Schwemmer T, Hanke W, Hwang H Y, Raghu S and Thomale R 2020 Phys. Rev. B 101 060504(R)
[14] Adhikary P, Bandyopadhyay S, Das T, Dasgupta I and Saha-Dasgupta T 2020 Phys. Rev. B 102 100501(R)
[15] Liu Z, Ren Z, Zhu W, Wang Z and Yang J 2020 npj Quantum Mater. 5 31
[16] Lechermann F 2020 Phys. Rev. B 101 081110(R)
[17] Krishna J, LaBollita H, Fumega A O, Pardo V and Botana A S 2020 Phys. Rev. B 102 224506
[18] Zhang G M, Zhang Y and Zhang F C 2020 Phys. Rev. B 101 020501(R)
[19] Sakakibara H, Usui H, Suzuki K, Kotani T, Aoki H and Kuroki K 2020 Phys. Rev. Lett. 125 077003
[20] Zhang H, Jin L, Wang S, Xi B, Shi X, Ye F and Ming J W 2020 Phys. Rev. Res. 2 013214
[21] Lechermann F 2020 Phys. Rev. X 10 041002
[22] Petocchi F, Christiansson V, Nilsson F, Aryasetiawan F and Werner P 2020 Phys. Rev. X 10 041047
[23] Lee K W and Pickett W E 2004 Phys. Rev. B 70 165109
[24] Wan X, Ivanov V, Resta G, Leonov I and Savrasov S Y 2021 Phys. Rev. B 103 075123
[25] Wang Y, Kang C J, Miao H and Kotliar J 2020 Phys. Rev. B 102 161118(R)
[26] Kang C J and Kotliar G 2020 arXiv:2007.15383 [cond-mat.str-el]
[27] Karp J, Hampel A, Zingl M, Botana A S, Park H, Norman M R and Millis A J 2020 Phys. Rev. B 102 245130
[28] Hepting M, Li D, Jia C J, Lu H, Paris E, Tseng Y, Feng X, Osada M, Been E, Hikita Y, Chuang Y D, Hussain Z, Zhou K J, Nag A, Garcia-Fernandez M, Rossi M, Huang H Y, Huang D J, Shen Z X, Schmitt T, Hwang H Y, Moritz B, Zaanen J, Devereaux T P and Lee W S 2020 Nat. Mater. 19 381
[29] Ryee S, Yoon H, Kim T J, Jeong M Y and Han M J 2020 Phys. Rev. B 101 064513
[30] Hu L H and Wu C 2019 Phys. Rev. Res. 1 032046(R)
[31] Gu Y, Zhu S, Wang X, Hu J and Chen H 2020 Commun. Phys. 3 84
[32] Zhang Y H and Vishwanath A 2020 Phys. Rev. Res. 2 023112
[33] Wang Z, Zhang G M, Yang Y and Zhang F C 2020 Phys. Rev. B 102 220501(R)
[34] Gu Q, Li Y, Wan S, Li H, Guo H, Yang H, Li Q, Zhu X, Pan X, Nie Y and Wen H H 2020 Nat. Commun. 11 6027
[35]Tinkham M 1996 Introduction to Superconductivity 2nd edn (New York: McGraw-Hill, Inc)
[36] Werthamer N R, Helfand E and Hohenberg P C 1966 Phys. Rev. 147 295
[37] Ruggiero S T, Barbee T W and Beasley M R 1980 Phys. Rev. Lett. 45 1299
[38] Sarma G 1963 J. Phys. Chem. Solids 24 1029
[39] Maki K 1966 Phys. Rev. 148 362
[40] Helfand E and Werthamer N R 1966 Phys. Rev. 147 288
[41] Brison J P, Keller N, Vernière A, Lejay P, Schmidt L, Buzdin A, Flouquet J, Julian S R and Lonzarich G G 1995 Physica C 250 128
[42] Buzdin A I and Brison J P 1996 Europhys. Lett. 35 707
[43] Bianchi A, Movshovich R, Capan C, Pagliuso P G and Sarrao J L 2003 Phys. Rev. Lett. 91 187004
[44] Radovan H A, Fortune N A, Murphy T P, Hannahs S T, Palm E C, Tozer S W and Hall D 2003 Nature 425 51
[45] Kumagai K, Saitoh M, Oyaizu T, Furukawa Y, Takashima S, Nohara M, Takagi H and Matsuda Y 2006 Phys. Rev. Lett. 97 227002
[46] Matsuda Y and Shimahara H 2007 J. Phys. Soc. Jpn. 76 051005
[47] Agosta C C, Martin C, Radovan H A, Palm E C, Murphy T P, Tozer S W, Cooley J C, Schlueter J A and Petrovic C 2006 J. Phys. Chem. Solids 67 586
[48] Singleton J, Symington J A, Nam M S, Ardavan A, Kurmoo M and Day P 2000 J. Phys.: Condens. Matter 12 L641
[49] Coniglio W A, Winter L E, Cho K, Agosta C C, Fravel B and Montgomery L K 2011 Phys. Rev. B 83 224507
[50] Agosta C C, Jin J, Coniglio W A, Smith B E, Cho K, Stroe I, Martin C, Tozer S W, Murphy T P, Palm E C, Schlueter J A and Kurmoo M 2012 Phys. Rev. B 85 214514
[51] Mayaffre H, Krämer S, Horvatić M, Berthier C, Miyagawa K, Kanoda K and Mitrović V F 2014 Nat. Phys. 10 928
[52] Agosta C C, Fortune N A, Hannahs S T, Gu S, Liang L, Park J H and Schleuter J A 2017 Phys. Rev. Lett. 118 267001
[53] Wosnitza J 2018 Ann. Phys. 530 1700282
[54] Agosta C C 2018 Crystals 8 285
[55] Klein T, Braithwaite D, Demuer A, Knafo W, Lapertot G, Marcenat C, Rodière P, Sheikin I, Strobel P, Sulpice A and Toulemonde P 2010 Phys. Rev. B 82 184506
[56] Gurevich A 2011 Rep. Prog. Phys. 74 124501
[57] Gurevich A 2010 Phys. Rev. B 82 184504
[58] Fulde P and Ferrell R A 1964 Phys. Rev. 135 A550
[59]Larkin A I and Ovchinnikov Y N 1964 Zh. Eksp. Teor. Fiz. 47 1136; [1965 Sov. Phys. JETP 20 762]
[60] Blatter G, Geshkenbein V B and Larkin A I 1992 Phys. Rev. Lett. 68 875
[61] Wang Z S, Luo H Q, Ren C and Wen H H 2008 Phys. Rev. B 78 140501
[62] Li C H, Shen B, Han F, Zhu X Y and Wen H H 2011 Phys. Rev. B 83 184521
[63] Liu J Z, Fang D L, Wang Z Y, Xing J, Du Z Y, Li S, Zhu X Y, Yang H and Wen H H 2014 Europhys. Lett. 106 67002
[64] Jovanović V P, Li Z Z and Raffy H 2009 Phys. Rev. B 80 024501
[65] Smylie M P, Koshelev A E, Willa K, Willa R, Kwok W K, Bao J K, Chung D Y, Kanatzidis M G, Singleton J, Balakirev F F, Hebbeker H, Niraula P, Bokari E, Kayani A and Welp U 2019 Phys. Rev. B 100 054507
[66] Stewart G R 2011 Rev. Mod. Phys. 83 1589
[67] Wang B Y, Li D, Goodge B H, Lee K, Osada M, Harvey S P, Kourkoutis L F, Beasley M R and Hwang H Y 2020 arXiv:2012.06560 [cond-mat.supr-con]
Viewed
Full text


Abstract