Chin. Phys. Lett.  2021, Vol. 38 Issue (4): 040501    DOI: 10.1088/0256-307X/38/4/040501
GENERAL |
Excess Diffusion of a Driven Colloidal Particle in a Convection Array
Qingqing Yin1, Yunyun Li1*, Fabio Marchesoni1,2*, Debajyoti Debnath3, and Pulak K. Ghosh3*
1Center for Phononics and Thermal Energy Science, Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
2Dipartimento di Fisica, Università di Camerino, I-62032 Camerino, Italy
3Department of Chemistry, Presidency University, Kolkata, India
Cite this article:   
Qingqing Yin, Yunyun Li, Fabio Marchesoni et al  2021 Chin. Phys. Lett. 38 040501
Download: PDF(896KB)   PDF(mobile)(894KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We numerically investigate the transport of a passive colloidal particle in a periodic array of planar counter-rotating convection rolls, at high Péclet numbers. It is shown that an external bias, oriented parallel to the array, produces a huge excess diffusion peak, in cases where bias and advection drag become comparable. This effect is not restricted to one-dimensional convection geometries, and occurs independently of the array's boundary conditions.
Received: 21 November 2020      Published: 06 April 2021
PACS:  05.40.Jc (Brownian motion)  
  66.10.Cb  
  05.20.Jj (Statistical mechanics of classical fluids)  
  05.60.-k (Transport processes)  
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 11875201 and 11935010). P.K.G. is supported by SERB Start-up Research Grant (Young Scientist) (Grant No. YSS/2014/000853) and the UGC-BSR Start-up (Grant No. F.30-92/2015). D.D. thanks CSIR, New Delhi, India, for support through a Junior Research Fellowship.
TRENDMD:   
URL:  
http://cpl.iphy.ac.cn/10.1088/0256-307X/38/4/040501       OR      http://cpl.iphy.ac.cn/Y2021/V38/I4/040501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Qingqing Yin
Yunyun Li
Fabio Marchesoni
Debajyoti Debnath
and Pulak K. Ghosh
[1] Costantini G and Marchesoni F 1999 Europhys. Lett. 48 491
[2] Lindner B, Kostur M and Schimansky-Geier L 2001 Fluct. Noise Lett. 1 R25
[3] Reimann P, Van den Broeck C, Linke H, Hänggi P, Rubi J M and Pérez-Madrid A 2001 Phys. Rev. Lett. 87 010602
[4]Risken H 1984 The Fokker-Planck Equation (Berlin: Springer) chap 11
[5]Jacobs M H 1967 Diffusion Processes (New York: Springer)
[6] Zwanzig R 1992 J. Phys. Chem. 96 3926
[7] review F A, Burada S P S, Hänggi P, Marchesoni F, Schmid G and Talkner P 2009 ChemPhysChem 10 45
[8] Reguera D and Rubí J M 2001 Phys. Rev. E 64 061106
[9] Yang X, Liu C, Li Y, Marchesoni F, Hänggi P and Zhang H P 2017 Proc. Natl. Acad. Sci. USA 114 9564
[10] Burada P S, Li Y, Riefler W and Schmid G 2010 Chem. Phys. 375 514
[11] Ai B, He Y and Zhong W 2014 J. Chem. Phys. 141 194111
[12]Kärger J and Ruthven D M 1992 Diffusion in Zeolites and Other Microporous Solids (New York: Wiley)
[13]Brenner H and Edwards D A 1993 Macrotransport Processes (New York: Butterworth-Heinemann)
[14]Hille B 2001 Ion Channels of Excitable Membranes (Sunderland: Sinauer) chap 13
[15]Kirby B J 2010 Micro- and Nanoscale Fluid Mechanics: Transport in Microfluidic Devices (Cambridge: Cambridge University Press)
[16] Tabeling P 2002 Phys. Rep. 362 1
[17]Moffatt H K, Zaslavsky G M, Comte P and Tabor Tabor M 1992 Topological Aspects of the Dynamics of Fluids and Plasmas (Netherlands: Springer)
[18] Rosenbluth M N, Berk H L, Doxas I and Horton W 1987 Phys. Fluids 30 2636
[19] Soward A M 1987 J. Fluid Mech. 180 267
[20] Shraiman B I 1987 Phys. Rev. A 36 261
[21] Young W, Pumir A and Pomeau Y 1989 Phys. Fluids A 1 462
[22] Yin Q, Li Y, Marchesoni F, Debnath T and Ghosh P K 2020 Phys. Fluids 32 092010
[23]Kloeden P E and Platen E 1992 Numerical Solution of Stochastic Differential Equations (Berlin: Springer)
[24] Li Y, Li L, Marchesoni F, Debnath D and Ghosh P K 2020 Phys. Rev. Res. 2 013250
[25] Solomon T H and Gollub J P 1988 Phys. Fluids 31 1372
[26] Solomon T H and Mezić I 2003 Nature 425 376
[27] Young Y N and Shelley M J 2007 Phys. Rev. Lett. 99 058303
[28] Manikantan H and Saintillan D 2013 Phys. Fluids 25 073603
[29] Torney C and Neufeld Z 2007 Phys. Rev. Lett. 99 078101
[30] Yin Q, Li Y, Li B, Marchesoni F, Nayak S and Ghosh P K 2021 J. Fluid Mech. 912 A14
[31] Borromeo M, Marchesoni F and Ghosh P K 2011 J. Chem. Phys. 134 051101
[32] Debnath D, Ghosh P K, Li Y, Marchesoni F and Li B 2016 Soft Matter 12 2017
[33] Li Y, Misko V R, Marchesoni F and Ghosh P K 2021 Entropy 23 343
Related articles from Frontiers Journals
[1] An Zhou, Li-Yan Qiao, Gui-Na Wei, Zhou-Ting Jiang, Ye-Hua Zhao. Self-Assembly of Dimer Motors under Confined Conditions[J]. Chin. Phys. Lett., 2020, 37(5): 040501
[2] Kang-Kang Ju, Cui-Xian Guo, Xiao-Yin Pan. Initial-Slip Term Effects on the Dissipation-Induced Transition of a Simple Harmonic Oscillator[J]. Chin. Phys. Lett., 2017, 34(1): 040501
[3] HAN Jie, BAO Jing-Dong. Harmonic Noise-Induced Resonant Passing in an Inverse Harmonic Potential[J]. Chin. Phys. Lett., 2014, 31(12): 040501
[4] Roumen Tsekov. Brownian Markets[J]. Chin. Phys. Lett., 2013, 30(8): 040501
[5] Roumen Tsekov, Marga C. Lensen. Brownian Motion and the Temperament of Living Cells[J]. Chin. Phys. Lett., 2013, 30(7): 040501
[6] HE Gui-Tian, LUO Mao-Kang. Weak Signal Frequency Detection Based on a Fractional-Order Bistable System[J]. Chin. Phys. Lett., 2012, 29(6): 040501
[7] LIU Jian, FAN Jian-Fen**. Relationship between the Permeation-Diffusion Parameters of a Single-File Channel[J]. Chin. Phys. Lett., 2012, 29(1): 040501
[8] KANG Yan-Mei, JIANG Yao-Lin. Long-Time Dynamic Response and Stochastic Resonance of Subdiffusive Overdamped Bistable Fractional Fokker--Planck Systems[J]. Chin. Phys. Lett., 2008, 25(10): 040501
[9] BAI Zhan-Wu. Noise-Induced Phase Transition: Zero-Dimensional Brownian Particles Varying between Ergodicity and Nonergodicity[J]. Chin. Phys. Lett., 2008, 25(4): 040501
[10] XIE Hui-Zhang, AI Bao-Quan, LIU Xue-Mei, CHENG Xiao-Bo, LIU Liang-Gang, LI Zhi-Bing. Particle Transport with Asymmetric Unbiased Forces and Entropic Barrier[J]. Chin. Phys. Lett., 2007, 24(12): 040501
[11] ZHANG Jia-Lin, YU Hong-Wei. Lorentz Invariance and Brownian Motion of Test Particles with Constant Classical Velocity in Electromagnetic Vacuum[J]. Chin. Phys. Lett., 2005, 22(12): 040501
[12] AI Bao-Quan, XIE Hui-Zhang, LIU Liang-Gang. Current Inversion in a Temperature Ratchet with Asymmetric Unbiased External Forces[J]. Chin. Phys. Lett., 2005, 22(11): 040501
[13] BAO Jing-Dong, BAI Zhan-Wu. Ballistic Diffusion of a Charged Particle in a Blackbody Radiation Field[J]. Chin. Phys. Lett., 2005, 22(8): 040501
[14] YANG Ming, LI Xiang-Lian, CAO Li, , WU Da-Jin,. Coherence Resonance in the System with Periodical Potential and Driven by Correlated Noises[J]. Chin. Phys. Lett., 2004, 21(7): 040501
[15] HU Mao-Bin, WU Qing-Song, JIANG Rui. Size Segregation in a Vibrated Tilted Compartmentalized Granular Chamber[J]. Chin. Phys. Lett., 2003, 20(7): 040501
Viewed
Full text


Abstract