Chin. Phys. Lett.  2021, Vol. 38 Issue (4): 040301    DOI: 10.1088/0256-307X/38/4/040301
GENERAL |
Continuous-Variable Measurement-Device-Independent Quantum Key Distribution with One-Time Shot-Noise Unit Calibration
Luyu Huang , Yichen Zhang*, and Song Yu 
State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
Cite this article:   
Luyu Huang , Yichen Zhang, and Song Yu  2021 Chin. Phys. Lett. 38 040301
Download: PDF(1550KB)   PDF(mobile)(1541KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Imperfections in practical detectors, including limited detection efficiency, and inherent electronic noise, can seriously decrease the transmission distance of continuous-variable measurement-device-independent quantum key distribution systems. Owing to the difficulties inherent in realizing a high-efficiency fiber homodyne detector, challenges still exist in continuous-variable measurement-device-independent quantum key distribution system implementation. We offer an alternative approach in an attempt to solve these difficulties and improve the potential for system implementation. Here, a novel practical detector modeling method is utilized, which is combined with a one-time shot-noise-unit calibration method for the purpose of system realization. The new modeling method benefits greatly from taking advantage of one-time shot-noise-unit calibration methods, such as measuring electronic noise and shot noise directly to a novel shot-noise unit, so as to eliminate the statistical fluctuations found in previous methods; this makes the implementation of such systems simpler, and the calibration progress more accurate. We provide a simulation of the secret key rate versus distance with different parameters. In addition, the minimal detection efficiency required at each distance, as well as the contrast between the two methods, are also shown, so as to provide a reference in terms of system realization.
Received: 22 October 2020      Published: 06 April 2021
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Hk (Quantum communication)  
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 61531003 and 62001044), and the Fundamental Research Funds for the Central Universities of China.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/38/4/040301       OR      https://cpl.iphy.ac.cn/Y2021/V38/I4/040301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Luyu Huang 
Yichen Zhang
and Song Yu 
[1] Pirandola S, Andersen U L, Banchi L, Berta M, Bunandar D, Colbeck R, Englund D, Gehring T, Lupo C, Ottaviani C, Pereira J, Razavi M, Shaari J S, Tomamichel M, Usenko V C, Vallone G, Villoresi P and Wallden P 2020 Adv. Opt. Photon. 12 1012
[2] Xu F, Ma X, Zhang Q, Lo H K and Pan J 2020 Rev. Mod. Phys. 92 025002
[3] Weedbrook C, Pirandola S, Garcia-Patron R, Cerf N J, Ralph T C, Shapiro J H and Lloyd S 2012 Rev. Mod. Phys. 84 621
[4] Diamanti E and Leverrier A 2015 Entropy 17 6072
[5] Li Y, Wang X, Bai Z, Liu W, Yang S and Peng K 2017 Chin. Phys. B 26 040303
[6] Zhang G, Haw J Y, Cai H, Xu F, Assad S M, Fitzsimons J F, Zhou X, Zhang Y, Yu S, Wu J, Ser W, Kwek L C and Liu A Q 2019 Nat. Photon. 13 839
[7] Grosshans F and Grangier P 2002 Phys. Rev. Lett. 88 057902
[8] Grosshans F, Assche G V, Wenger J, Brouri R, Cerf N J and Grangier P 2003 Nature 421 238
[9] Renner R and Cirac J I 2009 Phys. Rev. Lett. 102 110504
[10] Leverrier A and Grangier P 2015 Phys. Rev. Lett. 114 070501
[11] Leverrier A 2017 Phys. Rev. Lett. 118 200501
[12] Li Z, Zhang Y and Guo H 2018 arXiv:1805.04249 [quant-ph]
[13] Ghorai S, Grangier P, Diamanti E and Leverrier A 2019 Phys. Rev. X 9 021059
[14] Lin J, Upadhyaya T, Lutkenhaus N 2019 Phys. Rev. X 9 041064
[15] Ottaviani C, Woolley M J, Erementchouk M, Federici J F, Mazumder P, Pirandola S and Weedbrook C 2020 IEEE J. Sel. Areas Commun. 38 483
[16] Jouguet P, Kunz-Jacques S, Leverrier A, Grangier P and Diamanti E 2013 Nat. Photon. 7 378
[17] Zhang Y, Li Z, Chen Z, Weedbrook C, Zhao Y, Wang X, Huang Y, Xu C, Zhang X, Wang Z, Li M, Zhang X, Zheng Z, Chu B, Gao X, Meng N, Cai W, Wang Z, Wang G, Yu S and Guo H 2019 Quantum Sci. Technol. 4 065006
[18] Aguado A, Lopez V, Lopez D, Peev M, Poppe A, Pastor A, Folgueira J and Martin V 2019 IEEE Commun. Mag. 57 20
[19] Zhang Y, Chen Z, Pirandola S, Wang X, Zhou C, Chu B, Zhao Y, Xu B, Yu S and Guo H 2020 Phys. Rev. Lett. 125 010502
[20] Eriksson T A, Luis R S, Puttnam B J, Rademacher G, Fujiwara M, Awaji Y, Furukawa H, Wada N, Takeoka M and Sasaki M 2020 J. Lightwave Technol. 38 2214
[21] Qi B, Gunther H, Evans P G, Williams B P, Camacho R M and Peters N A 2020 Phys. Rev. Appl. 13 054065
[22] Wang H, Pi I, Huang W, Li Y, Shao Y, Yang J, Liu J, Zhang C, Zhang Y and Xu B 2020 Opt. Express 28 32882
[23] Su X, Wang W, Wang Y, Jia X, Xie C and Peng K 2009 Europhys. Lett. 87 20005
[24] Su X, Wang M, Yan Z, Jia X, Xie C and Peng K 2020 Sci. Chin. Inf. Sci. 63 180503
[25] Ma X, Sun S, Jiang M and Liang L 2013 Phys. Rev. A 87 52309
[26] Jouguet P, Kunz-Jacques S and Diamanti E 2013 Phys. Rev. A 87 062313
[27] Zhao Y, Zhang Y, Huang Y, Xu B, Yu S and Guo H 2018 J. Phys. B 52 015501
[28] Weedbrook C 2013 Phys. Rev. A 87 022308
[29] Zhang Y, Chen Z, Weedbrook C, Yu S and Guo H 2020 Sci. Rep. 10 6673
[30] Pirandola S, Ottaviani C, Spedalieri G, Weedbrook C, Braunstein S L, Lloyd S, Gehring T, Jacobsen C S and Andersen U L 2015 Nat. Photon. 9 397
[31] Li Z, Zhang Y, Xu F, Peng X and Guo H 2014 Phys. Rev. A 89 052301
[32] Wilkinson K N, Papanastasiou P, Ottaviani C, Gehring T and Pirandola S 2020 Phys. Rev. Res. 2 033424
[33] Zhao Y, Zhang Y, Xu B, Yu S and Guo H 2018 Phys. Rev. A 97 042328
[34] Ma H, Huang P, Bai D, Wang S, Bao W and Zeng G 2018 Phys. Rev. A 97 042329
[35] Huang L, Zhang Y, Chen Z and Yu S 2019 Entropy 21 1100
[36] Bai D, Huang P, Zhu Y, Ma H, Xiao T, Wang T and Zeng G 2020 Quantum Inf. Process. 19 53
[37] Zhang Y, Huang Y, Chen Z, Li Z, Yu S and Guo H 2020 Phys. Rev. Appl. 13 024058
[38] Lodewyck J, Bloch M, Garcia-Patron R, Fossier S, Karpov E, Diamanti E, Debuisschert T, Cerf N J, Tualle-Brouri R, McLaughlin S W and Grangier P 2007 Phys. Rev. A 76 042305
[39] Usenko V C and Filip R 2016 Entropy 18 20
[40] Zhou C, Wang X Y, Zhang Y C, Zhang Z G, Yu S and Guo H 2019 Phys. Rev. Appl. 12 054013
Viewed
Full text


Abstract